Process#

Source Code: lib/process.js

The process object provides information about, and control over, the current Node.js process.

import process from 'node:process';const process = require('node:process');

Process events#

The process object is an instance of EventEmitter.

Event: 'beforeExit'#

The 'beforeExit' event is emitted when Node.js empties its event loop and has no additional work to schedule. Normally, the Node.js process will exit when there is no work scheduled, but a listener registered on the 'beforeExit' event can make asynchronous calls, and thereby cause the Node.js process to continue.

The listener callback function is invoked with the value of process.exitCode passed as the only argument.

The 'beforeExit' event is not emitted for conditions causing explicit termination, such as calling process.exit() or uncaught exceptions.

The 'beforeExit' should not be used as an alternative to the 'exit' event unless the intention is to schedule additional work.

import process from 'node:process';

process.on('beforeExit', (code) => {
  console.log('Process beforeExit event with code: ', code);
});

process.on('exit', (code) => {
  console.log('Process exit event with code: ', code);
});

console.log('This message is displayed first.');

// Prints:
// This message is displayed first.
// Process beforeExit event with code: 0
// Process exit event with code: 0const process = require('node:process');

process.on('beforeExit', (code) => {
  console.log('Process beforeExit event with code: ', code);
});

process.on('exit', (code) => {
  console.log('Process exit event with code: ', code);
});

console.log('This message is displayed first.');

// Prints:
// This message is displayed first.
// Process beforeExit event with code: 0
// Process exit event with code: 0

Event: 'disconnect'#

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the 'disconnect' event will be emitted when the IPC channel is closed.

Event: 'exit'#

The 'exit' event is emitted when the Node.js process is about to exit as a result of either:

  • The process.exit() method being called explicitly;
  • The Node.js event loop no longer having any additional work to perform.

There is no way to prevent the exiting of the event loop at this point, and once all 'exit' listeners have finished running the Node.js process will terminate.

The listener callback function is invoked with the exit code specified either by the process.exitCode property, or the exitCode argument passed to the process.exit() method.

import process from 'node:process';

process.on('exit', (code) => {
  console.log(`About to exit with code: ${code}`);
});const process = require('node:process');

process.on('exit', (code) => {
  console.log(`About to exit with code: ${code}`);
});

Listener functions must only perform synchronous operations. The Node.js process will exit immediately after calling the 'exit' event listeners causing any additional work still queued in the event loop to be abandoned. In the following example, for instance, the timeout will never occur:

import process from 'node:process';

process.on('exit', (code) => {
  setTimeout(() => {
    console.log('This will not run');
  }, 0);
});const process = require('node:process');

process.on('exit', (code) => {
  setTimeout(() => {
    console.log('This will not run');
  }, 0);
});

Event: 'message'#

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the 'message' event is emitted whenever a message sent by a parent process using childprocess.send() is received by the child process.

The message goes through serialization and parsing. The resulting message might not be the same as what is originally sent.

If the serialization option was set to advanced used when spawning the process, the message argument can contain data that JSON is not able to represent. See Advanced serialization for child_process for more details.

Event: 'multipleResolves'#

Stability: 0 - Deprecated

  • type <string> The resolution type. One of 'resolve' or 'reject'.
  • promise <Promise> The promise that resolved or rejected more than once.
  • value <any> The value with which the promise was either resolved or rejected after the original resolve.

The 'multipleResolves' event is emitted whenever a Promise has been either:

  • Resolved more than once.
  • Rejected more than once.
  • Rejected after resolve.
  • Resolved after reject.

This is useful for tracking potential errors in an application while using the Promise constructor, as multiple resolutions are silently swallowed. However, the occurrence of this event does not necessarily indicate an error. For example, Promise.race() can trigger a 'multipleResolves' event.

Because of the unreliability of the event in cases like the Promise.race() example above it has been deprecated.

import process from 'node:process';

process.on('multipleResolves', (type, promise, reason) => {
  console.error(type, promise, reason);
  setImmediate(() => process.exit(1));
});

async function main() {
  try {
    return await new Promise((resolve, reject) => {
      resolve('First call');
      resolve('Swallowed resolve');
      reject(new Error('Swallowed reject'));
    });
  } catch {
    throw new Error('Failed');
  }
}

main().then(console.log);
// resolve: Promise { 'First call' } 'Swallowed resolve'
// reject: Promise { 'First call' } Error: Swallowed reject
//     at Promise (*)
//     at new Promise (<anonymous>)
//     at main (*)
// First callconst process = require('node:process');

process.on('multipleResolves', (type, promise, reason) => {
  console.error(type, promise, reason);
  setImmediate(() => process.exit(1));
});

async function main() {
  try {
    return await new Promise((resolve, reject) => {
      resolve('First call');
      resolve('Swallowed resolve');
      reject(new Error('Swallowed reject'));
    });
  } catch {
    throw new Error('Failed');
  }
}

main().then(console.log);
// resolve: Promise { 'First call' } 'Swallowed resolve'
// reject: Promise { 'First call' } Error: Swallowed reject
//     at Promise (*)
//     at new Promise (<anonymous>)
//     at main (*)
// First call

Event: 'rejectionHandled'#

  • promise <Promise> The late handled promise.

The 'rejectionHandled' event is emitted whenever a Promise has been rejected and an error handler was attached to it (using promise.catch(), for example) later than one turn of the Node.js event loop.

The Promise object would have previously been emitted in an 'unhandledRejection' event, but during the course of processing gained a rejection handler.

There is no notion of a top level for a Promise chain at which rejections can always be handled. Being inherently asynchronous in nature, a Promise rejection can be handled at a future point in time, possibly much later than the event loop turn it takes for the 'unhandledRejection' event to be emitted.

Another way of stating this is that, unlike in synchronous code where there is an ever-growing list of unhandled exceptions, with Promises there can be a growing-and-shrinking list of unhandled rejections.

In synchronous code, the 'uncaughtException' event is emitted when the list of unhandled exceptions grows.

In asynchronous code, the 'unhandledRejection' event is emitted when the list of unhandled rejections grows, and the 'rejectionHandled' event is emitted when the list of unhandled rejections shrinks.

import process from 'node:process';

const unhandledRejections = new Map();
process.on('unhandledRejection', (reason, promise) => {
  unhandledRejections.set(promise, reason);
});
process.on('rejectionHandled', (promise) => {
  unhandledRejections.delete(promise);
});const process = require('node:process');

const unhandledRejections = new Map();
process.on('unhandledRejection', (reason, promise) => {
  unhandledRejections.set(promise, reason);
});
process.on('rejectionHandled', (promise) => {
  unhandledRejections.delete(promise);
});

In this example, the unhandledRejections Map will grow and shrink over time, reflecting rejections that start unhandled and then become handled. It is possible to record such errors in an error log, either periodically (which is likely best for long-running application) or upon process exit (which is likely most convenient for scripts).

Event: 'workerMessage'#

The 'workerMessage' event is emitted for any incoming message send by the other party by using postMessageToThread().

Event: 'uncaughtException'#

  • err <Error> The uncaught exception.
  • origin <string> Indicates if the exception originates from an unhandled rejection or from a synchronous error. Can either be 'uncaughtException' or 'unhandledRejection'. The latter is used when an exception happens in a Promise based async context (or if a Promise is rejected) and --unhandled-rejections flag set to strict or throw (which is the default) and the rejection is not handled, or when a rejection happens during the command line entry point's ES module static loading phase.

The 'uncaughtException' event is emitted when an uncaught JavaScript exception bubbles all the way back to the event loop. By default, Node.js handles such exceptions by printing the stack trace to stderr and exiting with code 1, overriding any previously set process.exitCode. Adding a handler for the 'uncaughtException' event overrides this default behavior. Alternatively, change the process.exitCode in the 'uncaughtException' handler which will result in the process exiting with the provided exit code. Otherwise, in the presence of such handler the process will exit with 0.

import process from 'node:process';
import fs from 'node:fs';

process.on('uncaughtException', (err, origin) => {
  fs.writeSync(
    process.stderr.fd,
    `Caught exception: ${err}\n` +
    `Exception origin: ${origin}\n`,
  );
});

setTimeout(() => {
  console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');const process = require('node:process');
const fs = require('node:fs');

process.on('uncaughtException', (err, origin) => {
  fs.writeSync(
    process.stderr.fd,
    `Caught exception: ${err}\n` +
    `Exception origin: ${origin}\n`,
  );
});

setTimeout(() => {
  console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');

It is possible to monitor 'uncaughtException' events without overriding the default behavior to exit the process by installing a 'uncaughtExceptionMonitor' listener.

Warning: Using 'uncaughtException' correctly#

'uncaughtException' is a crude mechanism for exception handling intended to be used only as a last resort. The event should not be used as an equivalent to On Error Resume Next. Unhandled exceptions inherently mean that an application is in an undefined state. Attempting to resume application code without properly recovering from the exception can cause additional unforeseen and unpredictable issues.

Exceptions thrown from within the event handler will not be caught. Instead the process will exit with a non-zero exit code and the stack trace will be printed. This is to avoid infinite recursion.

Attempting to resume normally after an uncaught exception can be similar to pulling out the power cord when upgrading a computer. Nine out of ten times, nothing happens. But the tenth time, the system becomes corrupted.

The correct use of 'uncaughtException' is to perform synchronous cleanup of allocated resources (e.g. file descriptors, handles, etc) before shutting down the process. It is not safe to resume normal operation after 'uncaughtException'.

To restart a crashed application in a more reliable way, whether 'uncaughtException' is emitted or not, an external monitor should be employed in a separate process to detect application failures and recover or restart as needed.

Event: 'uncaughtExceptionMonitor'#

  • err <Error> The uncaught exception.
  • origin <string> Indicates if the exception originates from an unhandled rejection or from synchronous errors. Can either be 'uncaughtException' or 'unhandledRejection'. The latter is used when an exception happens in a Promise based async context (or if a Promise is rejected) and --unhandled-rejections flag set to strict or throw (which is the default) and the rejection is not handled, or when a rejection happens during the command line entry point's ES module static loading phase.

The 'uncaughtExceptionMonitor' event is emitted before an 'uncaughtException' event is emitted or a hook installed via process.setUncaughtExceptionCaptureCallback() is called.

Installing an 'uncaughtExceptionMonitor' listener does not change the behavior once an 'uncaughtException' event is emitted. The process will still crash if no 'uncaughtException' listener is installed.

import process from 'node:process';

process.on('uncaughtExceptionMonitor', (err, origin) => {
  MyMonitoringTool.logSync(err, origin);
});

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
// Still crashes Node.jsconst process = require('node:process');

process.on('uncaughtExceptionMonitor', (err, origin) => {
  MyMonitoringTool.logSync(err, origin);
});

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
// Still crashes Node.js

Event: 'unhandledRejection'#

  • reason <Error> | <any> The object with which the promise was rejected (typically an Error object).
  • promise <Promise> The rejected promise.

The 'unhandledRejection' event is emitted whenever a Promise is rejected and no error handler is attached to the promise within a turn of the event loop. When programming with Promises, exceptions are encapsulated as "rejected promises". Rejections can be caught and handled using promise.catch() and are propagated through a Promise chain. The 'unhandledRejection' event is useful for detecting and keeping track of promises that were rejected whose rejections have not yet been handled.

import process from 'node:process';

process.on('unhandledRejection', (reason, promise) => {
  console.log('Unhandled Rejection at:', promise, 'reason:', reason);
  // Application specific logging, throwing an error, or other logic here
});

somePromise.then((res) => {
  return reportToUser(JSON.pasre(res)); // Note the typo (`pasre`)
}); // No `.catch()` or `.then()`const process = require('node:process');

process.on('unhandledRejection', (reason, promise) => {
  console.log('Unhandled Rejection at:', promise, 'reason:', reason);
  // Application specific logging, throwing an error, or other logic here
});

somePromise.then((res) => {
  return reportToUser(JSON.pasre(res)); // Note the typo (`pasre`)
}); // No `.catch()` or `.then()`

The following will also trigger the 'unhandledRejection' event to be emitted:

import process from 'node:process';

function SomeResource() {
  // Initially set the loaded status to a rejected promise
  this.loaded = Promise.reject(new Error('Resource not yet loaded!'));
}

const resource = new SomeResource();
// no .catch or .then on resource.loaded for at least a turnconst process = require('node:process');

function SomeResource() {
  // Initially set the loaded status to a rejected promise
  this.loaded = Promise.reject(new Error('Resource not yet loaded!'));
}

const resource = new SomeResource();
// no .catch or .then on resource.loaded for at least a turn

In this example case, it is possible to track the rejection as a developer error as would typically be the case for other 'unhandledRejection' events. To address such failures, a non-operational .catch(() => { }) handler may be attached to resource.loaded, which would prevent the 'unhandledRejection' event from being emitted.

If an 'unhandledRejection' event is emitted but not handled it will be raised as an uncaught exception. This alongside other behaviors of 'unhandledRejection' events can changed via the --unhandled-rejections flag.

Event: 'warning'#

  • warning <Error> Key properties of the warning are:
    • name <string> The name of the warning. Default: 'Warning'.
    • message <string> A system-provided description of the warning.
    • stack <string> A stack trace to the location in the code where the warning was issued.

The 'warning' event is emitted whenever Node.js emits a process warning.

A process warning is similar to an error in that it describes exceptional conditions that are being brought to the user's attention. However, warnings are not part of the normal Node.js and JavaScript error handling flow. Node.js can emit warnings whenever it detects bad coding practices that could lead to sub-optimal application performance, bugs, or security vulnerabilities.

import process from 'node:process';

process.on('warning', (warning) => {
  console.warn(warning.name);    // Print the warning name
  console.warn(warning.message); // Print the warning message
  console.warn(warning.stack);   // Print the stack trace
});const process = require('node:process');

process.on('warning', (warning) => {
  console.warn(warning.name);    // Print the warning name
  console.warn(warning.message); // Print the warning message
  console.warn(warning.stack);   // Print the stack trace
});

By default, Node.js will print process warnings to stderr. The --no-warnings command-line option can be used to suppress the default console output but the 'warning' event will still be emitted by the process object. Currently, it is not possible to suppress specific warning types other than deprecation warnings. To suppress deprecation warnings, check out the --no-deprecation flag.

The following example illustrates the warning that is printed to stderr when too many listeners have been added to an event:

$ node
> events.defaultMaxListeners = 1;
> process.on('foo', () => {});
> process.on('foo', () => {});
> (node:38638) MaxListenersExceededWarning: Possible EventEmitter memory leak
detected. 2 foo listeners added. Use emitter.setMaxListeners() to increase limit 

In contrast, the following example turns off the default warning output and adds a custom handler to the 'warning' event:

$ node --no-warnings
> const p = process.on('warning', (warning) => console.warn('Do not do that!'));
> events.defaultMaxListeners = 1;
> process.on('foo', () => {});
> process.on('foo', () => {});
> Do not do that! 

The --trace-warnings command-line option can be used to have the default console output for warnings include the full stack trace of the warning.

Launching Node.js using the --throw-deprecation command-line flag will cause custom deprecation warnings to be thrown as exceptions.

Using the --trace-deprecation command-line flag will cause the custom deprecation to be printed to stderr along with the stack trace.

Using the --no-deprecation command-line flag will suppress all reporting of the custom deprecation.

The *-deprecation command-line flags only affect warnings that use the name 'DeprecationWarning'.

Emitting custom warnings#

See the process.emitWarning() method for issuing custom or application-specific warnings.

Node.js warning names#

There are no strict guidelines for warning types (as identified by the name property) emitted by Node.js. New types of warnings can be added at any time. A few of the warning types that are most common include:

  • 'DeprecationWarning' - Indicates use of a deprecated Node.js API or feature. Such warnings must include a 'code' property identifying the deprecation code.
  • 'ExperimentalWarning' - Indicates use of an experimental Node.js API or feature. Such features must be used with caution as they may change at any time and are not subject to the same strict semantic-versioning and long-term support policies as supported features.
  • 'MaxListenersExceededWarning' - Indicates that too many listeners for a given event have been registered on either an EventEmitter or EventTarget. This is often an indication of a memory leak.
  • 'TimeoutOverflowWarning' - Indicates that a numeric value that cannot fit within a 32-bit signed integer has been provided to either the setTimeout() or setInterval() functions.
  • 'TimeoutNegativeWarning' - Indicates that a negative number has provided to either the setTimeout() or setInterval() functions.
  • 'TimeoutNaNWarning' - Indicates that a value which is not a number has provided to either the setTimeout() or setInterval() functions.
  • 'UnsupportedWarning' - Indicates use of an unsupported option or feature that will be ignored rather than treated as an error. One example is use of the HTTP response status message when using the HTTP/2 compatibility API.

Event: 'worker'#

The 'worker' event is emitted after a new <Worker> thread has been created.

Signal events#

Signal events will be emitted when the Node.js process receives a signal. Please refer to signal(7) for a listing of standard POSIX signal names such as 'SIGINT', 'SIGHUP', etc.

Signals are not available on Worker threads.

The signal handler will receive the signal's name ('SIGINT', 'SIGTERM', etc.) as the first argument.

The name of each event will be the uppercase common name for the signal (e.g. 'SIGINT' for SIGINT signals).

import process from 'node:process';

// Begin reading from stdin so the process does not exit.
process.stdin.resume();

process.on('SIGINT', () => {
  console.log('Received SIGINT. Press Control-D to exit.');
});

// Using a single function to handle multiple signals
function handle(signal) {
  console.log(`Received ${signal}`);
}

process.on('SIGINT', handle);
process.on('SIGTERM', handle);const process = require('node:process');

// Begin reading from stdin so the process does not exit.
process.stdin.resume();

process.on('SIGINT', () => {
  console.log('Received SIGINT. Press Control-D to exit.');
});

// Using a single function to handle multiple signals
function handle(signal) {
  console.log(`Received ${signal}`);
}

process.on('SIGINT', handle);
process.on('SIGTERM', handle);
  • 'SIGUSR1' is reserved by Node.js to start the debugger. It's possible to install a listener but doing so might interfere with the debugger.
  • 'SIGTERM' and 'SIGINT' have default handlers on non-Windows platforms that reset the terminal mode before exiting with code 128 + signal number. If one of these signals has a listener installed, its default behavior will be removed (Node.js will no longer exit).
  • 'SIGPIPE' is ignored by default. It can have a listener installed.
  • 'SIGHUP' is generated on Windows when the console window is closed, and on other platforms under various similar conditions. See signal(7). It can have a listener installed, however Node.js will be unconditionally terminated by Windows about 10 seconds later. On non-Windows platforms, the default behavior of SIGHUP is to terminate Node.js, but once a listener has been installed its default behavior will be removed.
  • 'SIGTERM' is not supported on Windows, it can be listened on.
  • 'SIGINT' from the terminal is supported on all platforms, and can usually be generated with Ctrl+C (though this may be configurable). It is not generated when terminal raw mode is enabled and Ctrl+C is used.
  • 'SIGBREAK' is delivered on Windows when Ctrl+Break is pressed. On non-Windows platforms, it can be listened on, but there is no way to send or generate it.
  • 'SIGWINCH' is delivered when the console has been resized. On Windows, this will only happen on write to the console when the cursor is being moved, or when a readable tty is used in raw mode.
  • 'SIGKILL' cannot have a listener installed, it will unconditionally terminate Node.js on all platforms.
  • 'SIGSTOP' cannot have a listener installed.
  • 'SIGBUS', 'SIGFPE', 'SIGSEGV', and 'SIGILL', when not raised artificially using kill(2), inherently leave the process in a state from which it is not safe to call JS listeners. Doing so might cause the process to stop responding.
  • 0 can be sent to test for the existence of a process, it has no effect if the process exists, but will throw an error if the process does not exist.

Windows does not support signals so has no equivalent to termination by signal, but Node.js offers some emulation with process.kill(), and subprocess.kill():

  • Sending SIGINT, SIGTERM, and SIGKILL will cause the unconditional termination of the target process, and afterwards, subprocess will report that the process was terminated by signal.
  • Sending signal 0 can be used as a platform independent way to test for the existence of a process.

process.abort()#

The process.abort() method causes the Node.js process to exit immediately and generate a core file.

This feature is not available in Worker threads.

process.allowedNodeEnvironmentFlags#

The process.allowedNodeEnvironmentFlags property is a special, read-only Set of flags allowable within the NODE_OPTIONS environment variable.

process.allowedNodeEnvironmentFlags extends Set, but overrides Set.prototype.has to recognize several different possible flag representations. process.allowedNodeEnvironmentFlags.has() will return true in the following cases:

  • Flags may omit leading single (-) or double (--) dashes; e.g., inspect-brk for --inspect-brk, or r for -r.
  • Flags passed through to V8 (as listed in --v8-options) may replace one or more non-leading dashes for an underscore, or vice-versa; e.g., --perf_basic_prof, --perf-basic-prof, --perf_basic-prof, etc.
  • Flags may contain one or more equals (=) characters; all characters after and including the first equals will be ignored; e.g., --stack-trace-limit=100.
  • Flags must be allowable within NODE_OPTIONS.

When iterating over process.allowedNodeEnvironmentFlags, flags will appear only once; each will begin with one or more dashes. Flags passed through to V8 will contain underscores instead of non-leading dashes:

import { allowedNodeEnvironmentFlags } from 'node:process';

allowedNodeEnvironmentFlags.forEach((flag) => {
  // -r
  // --inspect-brk
  // --abort_on_uncaught_exception
  // ...
});const { allowedNodeEnvironmentFlags } = require('node:process');

allowedNodeEnvironmentFlags.forEach((flag) => {
  // -r
  // --inspect-brk
  // --abort_on_uncaught_exception
  // ...
});

The methods add(), clear(), and delete() of process.allowedNodeEnvironmentFlags do nothing, and will fail silently.

If Node.js was compiled without NODE_OPTIONS support (shown in process.config), process.allowedNodeEnvironmentFlags will contain what would have been allowable.

process.arch#

The operating system CPU architecture for which the Node.js binary was compiled. Possible values are: 'arm', 'arm64', 'ia32', 'loong64', 'mips', 'mipsel', 'ppc64', 'riscv64', 's390', 's390x', and 'x64'.

import { arch } from 'node:process';

console.log(`This processor architecture is ${arch}`);const { arch } = require('node:process');

console.log(`This processor architecture is ${arch}`);

process.argv#

The process.argv property returns an array containing the command-line arguments passed when the Node.js process was launched. The first element will be process.execPath. See process.argv0 if access to the original value of argv[0] is needed. The second element will be the path to the JavaScript file being executed. The remaining elements will be any additional command-line arguments.

For example, assuming the following script for process-args.js:

import { argv } from 'node:process';

// print process.argv
argv.forEach((val, index) => {
  console.log(`${index}: ${val}`);
});const { argv } = require('node:process');

// print process.argv
argv.forEach((val, index) => {
  console.log(`${index}: ${val}`);
});

Launching the Node.js process as:

node process-args.js one two=three four 

Would generate the output:

0: /usr/local/bin/node
1: /Users/mjr/work/node/process-args.js
2: one
3: two=three
4: four 

process.argv0#

The process.argv0 property stores a read-only copy of the original value of argv[0] passed when Node.js starts.

$ bash -c 'exec -a customArgv0 ./node'
> process.argv[0]
'/Volumes/code/external/node/out/Release/node'
> process.argv0
'customArgv0' 

process.availableMemory()#

Gets the amount of free memory that is still available to the process (in bytes).

See uv_get_available_memory for more information.

process.channel#

If the Node.js process was spawned with an IPC channel (see the Child Process documentation), the process.channel property is a reference to the IPC channel. If no IPC channel exists, this property is undefined.

process.channel.ref()#

This method makes the IPC channel keep the event loop of the process running if .unref() has been called before.

Typically, this is managed through the number of 'disconnect' and 'message' listeners on the process object. However, this method can be used to explicitly request a specific behavior.

process.channel.unref()#

This method makes the IPC channel not keep the event loop of the process running, and lets it finish even while the channel is open.

Typically, this is managed through the number of 'disconnect' and 'message' listeners on the process object. However, this method can be used to explicitly request a specific behavior.

process.chdir(directory)#

The process.chdir() method changes the current working directory of the Node.js process or throws an exception if doing so fails (for instance, if the specified directory does not exist).

import { chdir, cwd } from 'node:process';

console.log(`Starting directory: ${cwd()}`);
try {
  chdir('/tmp');
  console.log(`New directory: ${cwd()}`);
} catch (err) {
  console.error(`chdir: ${err}`);
}const { chdir, cwd } = require('node:process');

console.log(`Starting directory: ${cwd()}`);
try {
  chdir('/tmp');
  console.log(`New directory: ${cwd()}`);
} catch (err) {
  console.error(`chdir: ${err}`);
}

This feature is not available in Worker threads.

process.config#

The process.config property returns a frozen Object containing the JavaScript representation of the configure options used to compile the current Node.js executable. This is the same as the config.gypi file that was produced when running the ./configure script.

An example of the possible output looks like:

{
  target_defaults:
   { cflags: [],
     default_configuration: 'Release',
     defines: [],
     include_dirs: [],
     libraries: [] },
  variables:
   {
     host_arch: 'x64',
     napi_build_version: 5,
     node_install_npm: 'true',
     node_prefix: '',
     node_shared_cares: 'false',
     node_shared_http_parser: 'false',
     node_shared_libuv: 'false',
     node_shared_zlib: 'false',
     node_use_openssl: 'true',
     node_shared_openssl: 'false',
     target_arch: 'x64',
     v8_use_snapshot: 1
   }
} 

process.connected#

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the process.connected property will return true so long as the IPC channel is connected and will return false after process.disconnect() is called.

Once process.connected is false, it is no longer possible to send messages over the IPC channel using process.send().

process.constrainedMemory()#

Gets the amount of memory available to the process (in bytes) based on limits imposed by the OS. If there is no such constraint, or the constraint is unknown, 0 is returned.

See uv_get_constrained_memory for more information.

process.cpuUsage([previousValue])#

The process.cpuUsage() method returns the user and system CPU time usage of the current process, in an object with properties user and system, whose values are microsecond values (millionth of a second). These values measure time spent in user and system code respectively, and may end up being greater than actual elapsed time if multiple CPU cores are performing work for this process.

The result of a previous call to process.cpuUsage() can be passed as the argument to the function, to get a diff reading.

import { cpuUsage } from 'node:process';

const startUsage = cpuUsage();
// { user: 38579, system: 6986 }

// spin the CPU for 500 milliseconds
const now = Date.now();
while (Date.now() - now < 500);

console.log(cpuUsage(startUsage));
// { user: 514883, system: 11226 }const { cpuUsage } = require('node:process');

const startUsage = cpuUsage();
// { user: 38579, system: 6986 }

// spin the CPU for 500 milliseconds
const now = Date.now();
while (Date.now() - now < 500);

console.log(cpuUsage(startUsage));
// { user: 514883, system: 11226 }

process.cwd()#

The process.cwd() method returns the current working directory of the Node.js process.

import { cwd } from 'node:process';

console.log(`Current directory: ${cwd()}`);const { cwd } = require('node:process');

console.log(`Current directory: ${cwd()}`);

process.debugPort#

The port used by the Node.js debugger when enabled.

import process from 'node:process';

process.debugPort = 5858;const process = require('node:process');

process.debugPort = 5858;

process.disconnect()#

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the process.disconnect() method will close the IPC channel to the parent process, allowing the child process to exit gracefully once there are no other connections keeping it alive.

The effect of calling process.disconnect() is the same as calling ChildProcess.disconnect() from the parent process.

If the Node.js process was not spawned with an IPC channel, process.disconnect() will be undefined.

process.dlopen(module, filename[, flags])#

The process.dlopen() method allows dynamically loading shared objects. It is primarily used by require() to load C++ Addons, and should not be used directly, except in special cases. In other words, require() should be preferred over process.dlopen() unless there are specific reasons such as custom dlopen flags or loading from ES modules.

The flags argument is an integer that allows to specify dlopen behavior. See the os.constants.dlopen documentation for details.

An important requirement when calling process.dlopen() is that the module instance must be passed. Functions exported by the C++ Addon are then accessible via module.exports.

The example below shows how to load a C++ Addon, named local.node, that exports a foo function. All the symbols are loaded before the call returns, by passing the RTLD_NOW constant. In this example the constant is assumed to be available.

import { dlopen } from 'node:process';
import { constants } from 'node:os';
import { fileURLToPath } from 'node:url';

const module = { exports: {} };
dlopen(module, fileURLToPath(new URL('local.node', import.meta.url)),
       constants.dlopen.RTLD_NOW);
module.exports.foo();const { dlopen } = require('node:process');
const { constants } = require('node:os');
const { join } = require('node:path');

const module = { exports: {} };
dlopen(module, join(__dirname, 'local.node'), constants.dlopen.RTLD_NOW);
module.exports.foo();

process.emitWarning(warning[, options])#

  • warning <string> | <Error> The warning to emit.
  • options <Object>
    • type <string> When warning is a String, type is the name to use for the type of warning being emitted. Default: 'Warning'.
    • code <string> A unique identifier for the warning instance being emitted.
    • ctor <Function> When warning is a String, ctor is an optional function used to limit the generated stack trace. Default: process.emitWarning.
    • detail <string> Additional text to include with the error.

The process.emitWarning() method can be used to emit custom or application specific process warnings. These can be listened for by adding a handler to the 'warning' event.

import { emitWarning } from 'node:process';

// Emit a warning with a code and additional detail.
emitWarning('Something happened!', {
  code: 'MY_WARNING',
  detail: 'This is some additional information',
});
// Emits:
// (node:56338) [MY_WARNING] Warning: Something happened!
// This is some additional informationconst { emitWarning } = require('node:process');

// Emit a warning with a code and additional detail.
emitWarning('Something happened!', {
  code: 'MY_WARNING',
  detail: 'This is some additional information',
});
// Emits:
// (node:56338) [MY_WARNING] Warning: Something happened!
// This is some additional information

In this example, an Error object is generated internally by process.emitWarning() and passed through to the 'warning' handler.

import process from 'node:process';

process.on('warning', (warning) => {
  console.warn(warning.name);    // 'Warning'
  console.warn(warning.message); // 'Something happened!'
  console.warn(warning.code);    // 'MY_WARNING'
  console.warn(warning.stack);   // Stack trace
  console.warn(warning.detail);  // 'This is some additional information'
});const process = require('node:process');

process.on('warning', (warning) => {
  console.warn(warning.name);    // 'Warning'
  console.warn(warning.message); // 'Something happened!'
  console.warn(warning.code);    // 'MY_WARNING'
  console.warn(warning.stack);   // Stack trace
  console.warn(warning.detail);  // 'This is some additional information'
});

If warning is passed as an Error object, the options argument is ignored.

process.emitWarning(warning[, type[, code]][, ctor])#

  • warning <string> | <Error> The warning to emit.
  • type <string> When warning is a String, type is the name to use for the type of warning being emitted. Default: 'Warning'.
  • code <string> A unique identifier for the warning instance being emitted.
  • ctor <Function> When warning is a String, ctor is an optional function used to limit the generated stack trace. Default: process.emitWarning.

The process.emitWarning() method can be used to emit custom or application specific process warnings. These can be listened for by adding a handler to the 'warning' event.

import { emitWarning } from 'node:process';

// Emit a warning using a string.
emitWarning('Something happened!');
// Emits: (node: 56338) Warning: Something happened!const { emitWarning } = require('node:process');

// Emit a warning using a string.
emitWarning('Something happened!');
// Emits: (node: 56338) Warning: Something happened!
import { emitWarning } from 'node:process';

// Emit a warning using a string and a type.
emitWarning('Something Happened!', 'CustomWarning');
// Emits: (node:56338) CustomWarning: Something Happened!const { emitWarning } = require('node:process');

// Emit a warning using a string and a type.
emitWarning('Something Happened!', 'CustomWarning');
// Emits: (node:56338) CustomWarning: Something Happened!
import { emitWarning } from 'node:process';

emitWarning('Something happened!', 'CustomWarning', 'WARN001');
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!const { emitWarning } = require('node:process');

process.emitWarning('Something happened!', 'CustomWarning', 'WARN001');
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!

In each of the previous examples, an Error object is generated internally by process.emitWarning() and passed through to the 'warning' handler.

import process from 'node:process';

process.on('warning', (warning) => {
  console.warn(warning.name);
  console.warn(warning.message);
  console.warn(warning.code);
  console.warn(warning.stack);
});const process = require('node:process');

process.on('warning', (warning) => {
  console.warn(warning.name);
  console.warn(warning.message);
  console.warn(warning.code);
  console.warn(warning.stack);
});

If warning is passed as an Error object, it will be passed through to the 'warning' event handler unmodified (and the optional type, code and ctor arguments will be ignored):

import { emitWarning } from 'node:process';

// Emit a warning using an Error object.
const myWarning = new Error('Something happened!');
// Use the Error name property to specify the type name
myWarning.name = 'CustomWarning';
myWarning.code = 'WARN001';

emitWarning(myWarning);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!const { emitWarning } = require('node:process');

// Emit a warning using an Error object.
const myWarning = new Error('Something happened!');
// Use the Error name property to specify the type name
myWarning.name = 'CustomWarning';
myWarning.code = 'WARN001';

emitWarning(myWarning);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!

A TypeError is thrown if warning is anything other than a string or Error object.

While process warnings use Error objects, the process warning mechanism is not a replacement for normal error handling mechanisms.

The following additional handling is implemented if the warning type is 'DeprecationWarning':

  • If the --throw-deprecation command-line flag is used, the deprecation warning is thrown as an exception rather than being emitted as an event.
  • If the --no-deprecation command-line flag is used, the deprecation warning is suppressed.
  • If the --trace-deprecation command-line flag is used, the deprecation warning is printed to stderr along with the full stack trace.

Avoiding duplicate warnings#

As a best practice, warnings should be emitted only once per process. To do so, place the emitWarning() behind a boolean.

import { emitWarning } from 'node:process';

function emitMyWarning() {
  if (!emitMyWarning.warned) {
    emitMyWarning.warned = true;
    emitWarning('Only warn once!');
  }
}
emitMyWarning();
// Emits: (node: 56339) Warning: Only warn once!
emitMyWarning();
// Emits nothingconst { emitWarning } = require('node:process');

function emitMyWarning() {
  if (!emitMyWarning.warned) {
    emitMyWarning.warned = true;
    emitWarning('Only warn once!');
  }
}
emitMyWarning();
// Emits: (node: 56339) Warning: Only warn once!
emitMyWarning();
// Emits nothing

process.env#

The process.env property returns an object containing the user environment. See