Node.js v24.7.0 documentation
- Node.js v24.7.0
-
Table of contents
- Crypto
- Determining if crypto support is unavailable
- Asymmetric key types
- Class:
Certificate
- Class:
Cipheriv
- Class:
Decipheriv
- Class:
DiffieHellman
diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
diffieHellman.generateKeys([encoding])
diffieHellman.getGenerator([encoding])
diffieHellman.getPrime([encoding])
diffieHellman.getPrivateKey([encoding])
diffieHellman.getPublicKey([encoding])
diffieHellman.setPrivateKey(privateKey[, encoding])
diffieHellman.setPublicKey(publicKey[, encoding])
diffieHellman.verifyError
- Class:
DiffieHellmanGroup
- Class:
ECDH
- Static method:
ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])
ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
ecdh.generateKeys([encoding[, format]])
ecdh.getPrivateKey([encoding])
ecdh.getPublicKey([encoding][, format])
ecdh.setPrivateKey(privateKey[, encoding])
ecdh.setPublicKey(publicKey[, encoding])
- Static method:
- Class:
Hash
- Class:
Hmac
- Class:
KeyObject
- Class:
Sign
- Class:
Verify
- Class:
X509Certificate
new X509Certificate(buffer)
x509.ca
x509.checkEmail(email[, options])
x509.checkHost(name[, options])
x509.checkIP(ip)
x509.checkIssued(otherCert)
x509.checkPrivateKey(privateKey)
x509.fingerprint
x509.fingerprint256
x509.fingerprint512
x509.infoAccess
x509.issuer
x509.issuerCertificate
x509.keyUsage
x509.publicKey
x509.raw
x509.serialNumber
x509.subject
x509.subjectAltName
x509.toJSON()
x509.toLegacyObject()
x509.toString()
x509.validFrom
x509.validFromDate
x509.validTo
x509.validToDate
x509.verify(publicKey)
node:crypto
module methods and propertiescrypto.argon2(algorithm, parameters, callback)
crypto.argon2Sync(algorithm, parameters)
crypto.checkPrime(candidate[, options], callback)
crypto.checkPrimeSync(candidate[, options])
crypto.constants
crypto.createCipheriv(algorithm, key, iv[, options])
crypto.createDecipheriv(algorithm, key, iv[, options])
crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])
crypto.createDiffieHellman(primeLength[, generator])
crypto.createDiffieHellmanGroup(name)
crypto.createECDH(curveName)
crypto.createHash(algorithm[, options])
crypto.createHmac(algorithm, key[, options])
crypto.createPrivateKey(key)
crypto.createPublicKey(key)
crypto.createSecretKey(key[, encoding])
crypto.createSign(algorithm[, options])
crypto.createVerify(algorithm[, options])
crypto.decapsulate(key, ciphertext[, callback])
crypto.diffieHellman(options[, callback])
crypto.encapsulate(key[, callback])
crypto.fips
crypto.generateKey(type, options, callback)
crypto.generateKeyPair(type, options, callback)
crypto.generateKeyPairSync(type, options)
crypto.generateKeySync(type, options)
crypto.generatePrime(size[, options], callback)
crypto.generatePrimeSync(size[, options])
crypto.getCipherInfo(nameOrNid[, options])
crypto.getCiphers()
crypto.getCurves()
crypto.getDiffieHellman(groupName)
crypto.getFips()
crypto.getHashes()
crypto.getRandomValues(typedArray)
crypto.hash(algorithm, data[, options])
crypto.hkdf(digest, ikm, salt, info, keylen, callback)
crypto.hkdfSync(digest, ikm, salt, info, keylen)
crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)
crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)
crypto.privateDecrypt(privateKey, buffer)
crypto.privateEncrypt(privateKey, buffer)
crypto.publicDecrypt(key, buffer)
crypto.publicEncrypt(key, buffer)
crypto.randomBytes(size[, callback])
crypto.randomFill(buffer[, offset][, size], callback)
crypto.randomFillSync(buffer[, offset][, size])
crypto.randomInt([min, ]max[, callback])
crypto.randomUUID([options])
crypto.scrypt(password, salt, keylen[, options], callback)
crypto.scryptSync(password, salt, keylen[, options])
crypto.secureHeapUsed()
crypto.setEngine(engine[, flags])
crypto.setFips(bool)
crypto.sign(algorithm, data, key[, callback])
crypto.subtle
crypto.timingSafeEqual(a, b)
crypto.verify(algorithm, data, key, signature[, callback])
crypto.webcrypto
- Notes
- Crypto constants
- Crypto
-
Index
- Assertion testing
- Asynchronous context tracking
- Async hooks
- Buffer
- C++ addons
- C/C++ addons with Node-API
- C++ embedder API
- Child processes
- Cluster
- Command-line options
- Console
- Crypto
- Debugger
- Deprecated APIs
- Diagnostics Channel
- DNS
- Domain
- Environment Variables
- Errors
- Events
- File system
- Globals
- HTTP
- HTTP/2
- HTTPS
- Inspector
- Internationalization
- Modules: CommonJS modules
- Modules: ECMAScript modules
- Modules:
node:module
API - Modules: Packages
- Modules: TypeScript
- Net
- OS
- Path
- Performance hooks
- Permissions
- Process
- Punycode
- Query strings
- Readline
- REPL
- Report
- Single executable applications
- SQLite
- Stream
- String decoder
- Test runner
- Timers
- TLS/SSL
- Trace events
- TTY
- UDP/datagram
- URL
- Utilities
- V8
- VM
- WASI
- Web Crypto API
- Web Streams API
- Worker threads
- Zlib
- Other versions
- Options
Crypto#
Source Code: lib/crypto.js
The node:crypto
module provides cryptographic functionality that includes a
set of wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify
functions.
const { createHmac } = await import('node:crypto');
const secret = 'abcdefg';
const hash = createHmac('sha256', secret)
.update('I love cupcakes')
.digest('hex');
console.log(hash);
// Prints:
// c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
const { createHmac } = require('node:crypto');
const secret = 'abcdefg';
const hash = createHmac('sha256', secret)
.update('I love cupcakes')
.digest('hex');
console.log(hash);
// Prints:
// c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
Determining if crypto support is unavailable#
It is possible for Node.js to be built without including support for the
node:crypto
module. In such cases, attempting to import
from crypto
or
calling require('node:crypto')
will result in an error being thrown.
When using CommonJS, the error thrown can be caught using try/catch:
let crypto;
try {
crypto = require('node:crypto');
} catch (err) {
console.error('crypto support is disabled!');
}
When using the lexical ESM import
keyword, the error can only be
caught if a handler for process.on('uncaughtException')
is registered
before any attempt to load the module is made (using, for instance,
a preload module).
When using ESM, if there is a chance that the code may be run on a build
of Node.js where crypto support is not enabled, consider using the
import()
function instead of the lexical import
keyword:
let crypto;
try {
crypto = await import('node:crypto');
} catch (err) {
console.error('crypto support is disabled!');
}
Asymmetric key types#
The following table lists the asymmetric key types recognized by the KeyObject
API:
Key Type | Description | OID |
---|---|---|
'dh' | Diffie-Hellman | 1.2.840.113549.1.3.1 |
'dsa' | DSA | 1.2.840.10040.4.1 |
'ec' | Elliptic curve | 1.2.840.10045.2.1 |
'ed25519' | Ed25519 | 1.3.101.112 |
'ed448' | Ed448 | 1.3.101.113 |
'ml-dsa-44' 1 | ML-DSA-44 | 2.16.840.1.101.3.4.3.17 |
'ml-dsa-65' 1 | ML-DSA-65 | 2.16.840.1.101.3.4.3.18 |
'ml-dsa-87' 1 | ML-DSA-87 | 2.16.840.1.101.3.4.3.19 |
'ml-kem-1024' 1 | ML-KEM-1024 | 2.16.840.1.101.3.4.4.3 |
'ml-kem-512' 1 | ML-KEM-512 | 2.16.840.1.101.3.4.4.1 |
'ml-kem-768' 1 | ML-KEM-768 | 2.16.840.1.101.3.4.4.2 |
'rsa-pss' | RSA PSS | 1.2.840.113549.1.1.10 |
'rsa' | RSA | 1.2.840.113549.1.1.1 |
'x25519' | X25519 | 1.3.101.110 |
'x448' | X448 | 1.3.101.111 |
Class: Certificate
#
SPKAC is a Certificate Signing Request mechanism originally implemented by
Netscape and was specified formally as part of HTML5's keygen
element.
<keygen>
is deprecated since HTML 5.2 and new projects
should not use this element anymore.
The node:crypto
module provides the Certificate
class for working with SPKAC
data. The most common usage is handling output generated by the HTML5
<keygen>
element. Node.js uses OpenSSL's SPKAC implementation internally.
Static method: Certificate.exportChallenge(spkac[, encoding])
#
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thespkac
string.- Returns: <Buffer> The challenge component of the
spkac
data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const spkac = getSpkacSomehow();
const challenge = Certificate.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string
const { Certificate } = require('node:crypto');
const spkac = getSpkacSomehow();
const challenge = Certificate.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string
Static method: Certificate.exportPublicKey(spkac[, encoding])
#
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thespkac
string.- Returns: <Buffer> The public key component of the
spkac
data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const spkac = getSpkacSomehow();
const publicKey = Certificate.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
const { Certificate } = require('node:crypto');
const spkac = getSpkacSomehow();
const publicKey = Certificate.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
Static method: Certificate.verifySpkac(spkac[, encoding])
#
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thespkac
string.- Returns: <boolean>
true
if the givenspkac
data structure is valid,false
otherwise.
import { Buffer } from 'node:buffer';
const { Certificate } = await import('node:crypto');
const spkac = getSpkacSomehow();
console.log(Certificate.verifySpkac(Buffer.from(spkac)));
// Prints: true or false
const { Buffer } = require('node:buffer');
const { Certificate } = require('node:crypto');
const spkac = getSpkacSomehow();
console.log(Certificate.verifySpkac(Buffer.from(spkac)));
// Prints: true or false
Legacy API#
As a legacy interface, it is possible to create new instances of
the crypto.Certificate
class as illustrated in the examples below.
new crypto.Certificate()
#
Instances of the Certificate
class can be created using the new
keyword
or by calling crypto.Certificate()
as a function:
const { Certificate } = await import('node:crypto');
const cert1 = new Certificate();
const cert2 = Certificate();
const { Certificate } = require('node:crypto');
const cert1 = new Certificate();
const cert2 = Certificate();
certificate.exportChallenge(spkac[, encoding])
#
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thespkac
string.- Returns: <Buffer> The challenge component of the
spkac
data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string
const { Certificate } = require('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string
certificate.exportPublicKey(spkac[, encoding])
#
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thespkac
string.- Returns: <Buffer> The public key component of the
spkac
data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
const { Certificate } = require('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
certificate.verifySpkac(spkac[, encoding])
#
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thespkac
string.- Returns: <boolean>
true
if the givenspkac
data structure is valid,false
otherwise.
import { Buffer } from 'node:buffer';
const { Certificate } = await import('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints: true or false
const { Buffer } = require('node:buffer');
const { Certificate } = require('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints: true or false
Class: Cipheriv
#
- Extends: <stream.Transform>
Instances of the Cipheriv
class are used to encrypt data. The class can be
used in one of two ways:
- As a stream that is both readable and writable, where plain unencrypted data is written to produce encrypted data on the readable side, or
- Using the
cipher.update()
andcipher.final()
methods to produce the encrypted data.
The crypto.createCipheriv()
method is
used to create Cipheriv
instances. Cipheriv
objects are not to be created
directly using the new
keyword.
Example: Using Cipheriv
objects as streams:
const {
scrypt,
randomFill,
createCipheriv,
} = await import('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
if (err) throw err;
// Then, we'll generate a random initialization vector
randomFill(new Uint8Array(16), (err, iv) => {
if (err) throw err;
// Once we have the key and iv, we can create and use the cipher...
const cipher = createCipheriv(algorithm, key, iv);
let encrypted = '';
cipher.setEncoding('hex');
cipher.on('data', (chunk) => encrypted += chunk);
cipher.on('end', () => console.log(encrypted));
cipher.write('some clear text data');
cipher.end();
});
});
const {
scrypt,
randomFill,
createCipheriv,
} = require('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
if (err) throw err;
// Then, we'll generate a random initialization vector
randomFill(new Uint8Array(16), (err, iv) => {
if (err) throw err;
// Once we have the key and iv, we can create and use the cipher...
const cipher = createCipheriv(algorithm, key, iv);
let encrypted = '';
cipher.setEncoding('hex');
cipher.on('data', (chunk) => encrypted += chunk);
cipher.on('end', () => console.log(encrypted));
cipher.write('some clear text data');
cipher.end();
});
});
Example: Using Cipheriv
and piped streams:
import {
createReadStream,
createWriteStream,
} from 'node:fs';
import {
pipeline,
} from 'node:stream';
const {
scrypt,
randomFill,
createCipheriv,
} = await import('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
if (err) throw err;
// Then, we'll generate a random initialization vector
randomFill(new Uint8Array(16), (err, iv) => {
if (err) throw err;
const cipher = createCipheriv(algorithm, key, iv);
const input = createReadStream('test.js');
const output = createWriteStream('test.enc');
pipeline(input, cipher, output, (err) => {
if (err) throw err;
});
});
});
const {
createReadStream,
createWriteStream,
} = require('node:fs');
const {
pipeline,
} = require('node:stream');
const {
scrypt,
randomFill,
createCipheriv,
} = require('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
if (err) throw err;
// Then, we'll generate a random initialization vector
randomFill(new Uint8Array(16), (err, iv) => {
if (err) throw err;
const cipher = createCipheriv(algorithm, key, iv);
const input = createReadStream('test.js');
const output = createWriteStream('test.enc');
pipeline(input, cipher, output, (err) => {
if (err) throw err;
});
});
});
Example: Using the cipher.update()
and cipher.final()
methods:
const {
scrypt,
randomFill,
createCipheriv,
} = await import('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
if (err) throw err;
// Then, we'll generate a random initialization vector
randomFill(new Uint8Array(16), (err, iv) => {
if (err) throw err;
const cipher = createCipheriv(algorithm, key, iv);
let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
encrypted += cipher.final('hex');
console.log(encrypted);
});
});
const {
scrypt,
randomFill,
createCipheriv,
} = require('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
if (err) throw err;
// Then, we'll generate a random initialization vector
randomFill(new Uint8Array(16), (err, iv) => {
if (err) throw err;
const cipher = createCipheriv(algorithm, key, iv);
let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
encrypted += cipher.final('hex');
console.log(encrypted);
});
});
cipher.final([outputEncoding])
#
outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string> Any remaining enciphered contents.
If
outputEncoding
is specified, a string is returned. If anoutputEncoding
is not provided, aBuffer
is returned.
Once the cipher.final()
method has been called, the Cipheriv
object can no
longer be used to encrypt data. Attempts to call cipher.final()
more than
once will result in an error being thrown.
cipher.getAuthTag()
#
- Returns: <Buffer> When using an authenticated encryption mode (
GCM
,CCM
,OCB
, andchacha20-poly1305
are currently supported), thecipher.getAuthTag()
method returns aBuffer
containing the authentication tag that has been computed from the given data.
The cipher.getAuthTag()
method should only be called after encryption has
been completed using the cipher.final()
method.
If the authTagLength
option was set during the cipher
instance's creation,
this function will return exactly authTagLength
bytes.
cipher.setAAD(buffer[, options])
#
buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>options
<Object>stream.transform
options- Returns: <Cipheriv> The same
Cipheriv
instance for method chaining.
When using an authenticated encryption mode (GCM
, CCM
, OCB
, and
chacha20-poly1305
are
currently supported), the cipher.setAAD()
method sets the value used for the
additional authenticated data (AAD) input parameter.
The plaintextLength
option is optional for GCM
and OCB
. When using CCM
,
the plaintextLength
option must be specified and its value must match the
length of the plaintext in bytes. See CCM mode.
The cipher.setAAD()
method must be called before cipher.update()
.
cipher.setAutoPadding([autoPadding])
#
autoPadding
<boolean> Default:true
- Returns: <Cipheriv> The same
Cipheriv
instance for method chaining.
When using block encryption algorithms, the Cipheriv
class will automatically
add padding to the input data to the appropriate block size. To disable the
default padding call cipher.setAutoPadding(false)
.
When autoPadding
is false
, the length of the entire input data must be a
multiple of the cipher's block size or cipher.final()
will throw an error.
Disabling automatic padding is useful for non-standard padding, for instance
using 0x0
instead of PKCS padding.
The cipher.setAutoPadding()
method must be called before
cipher.final()
.
cipher.update(data[, inputEncoding][, outputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of the data.outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Updates the cipher with data
. If the inputEncoding
argument is given,
the data
argument is a string using the specified encoding. If the inputEncoding
argument is not given, data
must be a Buffer
, TypedArray
, or
DataView
. If data
is a Buffer
, TypedArray
, or DataView
, then
inputEncoding
is ignored.
The outputEncoding
specifies the output format of the enciphered
data. If the outputEncoding
is specified, a string using the specified encoding is returned. If no
outputEncoding
is provided, a Buffer
is returned.
The cipher.update()
method can be called multiple times with new data until
cipher.final()
is called. Calling cipher.update()
after
cipher.final()
will result in an error being thrown.
Class: Decipheriv
#
- Extends: <stream.Transform>
Instances of the Decipheriv
class are used to decrypt data. The class can be
used in one of two ways:
- As a stream that is both readable and writable, where plain encrypted data is written to produce unencrypted data on the readable side, or
- Using the
decipher.update()
anddecipher.final()
methods to produce the unencrypted data.
The crypto.createDecipheriv()
method is
used to create Decipheriv
instances. Decipheriv
objects are not to be created
directly using the new
keyword.
Example: Using Decipheriv
objects as streams:
import { Buffer } from 'node:buffer';
const {
scryptSync,
createDecipheriv,
} = await import('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Key length is dependent on the algorithm. In this case for aes192, it is
// 24 bytes (192 bits).
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.
const decipher = createDecipheriv(algorithm, key, iv);
let decrypted = '';
decipher.on('readable', () => {
let chunk;
while (null !== (chunk = decipher.read())) {
decrypted += chunk.toString('utf8');
}
});
decipher.on('end', () => {
console.log(decrypted);
// Prints: some clear text data
});
// Encrypted with same algorithm, key and iv.
const encrypted =
'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
decipher.write(encrypted, 'hex');
decipher.end();
const {
scryptSync,
createDecipheriv,
} = require('node:crypto');
const { Buffer } = require('node:buffer');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Key length is dependent on the algorithm. In this case for aes192, it is
// 24 bytes (192 bits).
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.
const decipher = createDecipheriv(algorithm, key, iv);
let decrypted = '';
decipher.on('readable', () => {
let chunk;
while (null !== (chunk = decipher.read())) {
decrypted += chunk.toString('utf8');
}
});
decipher.on('end', () => {
console.log(decrypted);
// Prints: some clear text data
});
// Encrypted with same algorithm, key and iv.
const encrypted =
'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
decipher.write(encrypted, 'hex');
decipher.end();
Example: Using Decipheriv
and piped streams:
import {
createReadStream,
createWriteStream,
} from 'node:fs';
import { Buffer } from 'node:buffer';
const {
scryptSync,
createDecipheriv,
} = await import('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.
const decipher = createDecipheriv(algorithm, key, iv);
const input = createReadStream('test.enc');
const output = createWriteStream('test.js');
input.pipe(decipher).pipe(output);
const {
createReadStream,
createWriteStream,
} = require('node:fs');
const {
scryptSync,
createDecipheriv,
} = require('node:crypto');
const { Buffer } = require('node:buffer');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.
const decipher = createDecipheriv(algorithm, key, iv);
const input = createReadStream('test.enc');
const output = createWriteStream('test.js');
input.pipe(decipher).pipe(output);
Example: Using the decipher.update()
and decipher.final()
methods:
import { Buffer } from 'node:buffer';
const {
scryptSync,
createDecipheriv,
} = await import('node:crypto');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.
const decipher = createDecipheriv(algorithm, key, iv);
// Encrypted using same algorithm, key and iv.
const encrypted =
'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data
const {
scryptSync,
createDecipheriv,
} = require('node:crypto');
const { Buffer } = require('node:buffer');
const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.
const decipher = createDecipheriv(algorithm, key, iv);
// Encrypted using same algorithm, key and iv.
const encrypted =
'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data
decipher.final([outputEncoding])
#
outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string> Any remaining deciphered contents.
If
outputEncoding
is specified, a string is returned. If anoutputEncoding
is not provided, aBuffer
is returned.
Once the decipher.final()
method has been called, the Decipheriv
object can
no longer be used to decrypt data. Attempts to call decipher.final()
more
than once will result in an error being thrown.
decipher.setAAD(buffer[, options])
#
buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>options
<Object>stream.transform
options- Returns: <Decipheriv> The same Decipher for method chaining.
When using an authenticated encryption mode (GCM
, CCM
, OCB
, and
chacha20-poly1305
are
currently supported), the decipher.setAAD()
method sets the value used for the
additional authenticated data (AAD) input parameter.
The options
argument is optional for GCM
. When using CCM
, the
plaintextLength
option must be specified and its value must match the length
of the ciphertext in bytes. See CCM mode.
The decipher.setAAD()
method must be called before decipher.update()
.
When passing a string as the buffer
, please consider
caveats when using strings as inputs to cryptographic APIs.
decipher.setAuthTag(buffer[, encoding])
#
buffer
<string> | <Buffer> | <ArrayBuffer> | <TypedArray> | <DataView>encoding
<string> String encoding to use whenbuffer
is a string.- Returns: <Decipheriv> The same Decipher for method chaining.
When using an authenticated encryption mode (GCM
, CCM
, OCB
, and
chacha20-poly1305
are
currently supported), the decipher.setAuthTag()
method is used to pass in the
received authentication tag. If no tag is provided, or if the cipher text
has been tampered with, decipher.final()
will throw, indicating that the
cipher text should be discarded due to failed authentication. If the tag length
is invalid according to NIST SP 800-38D or does not match the value of the
authTagLength
option, decipher.setAuthTag()
will throw an error.
The decipher.setAuthTag()
method must be called before decipher.update()
for CCM
mode or before decipher.final()
for GCM
and OCB
modes and
chacha20-poly1305
.
decipher.setAuthTag()
can only be called once.
When passing a string as the authentication tag, please consider caveats when using strings as inputs to cryptographic APIs.
decipher.setAutoPadding([autoPadding])
#
autoPadding
<boolean> Default:true
- Returns: <Decipheriv> The same Decipher for method chaining.
When data has been encrypted without standard block padding, calling
decipher.setAutoPadding(false)
will disable automatic padding to prevent
decipher.final()
from checking for and removing padding.
Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size.
The decipher.setAutoPadding()
method must be called before
decipher.final()
.
decipher.update(data[, inputEncoding][, outputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of thedata
string.outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Updates the decipher with data
. If the inputEncoding
argument is given,
the data
argument is a string using the specified encoding. If the inputEncoding
argument is not given, data
must be a Buffer
. If data
is a
Buffer
then inputEncoding
is ignored.
The outputEncoding
specifies the output format of the enciphered
data. If the outputEncoding
is specified, a string using the specified encoding is returned. If no
outputEncoding
is provided, a Buffer
is returned.
The decipher.update()
method can be called multiple times with new data until
decipher.final()
is called. Calling decipher.update()
after
decipher.final()
will result in an error being thrown.
Even if the underlying cipher implements authentication, the authenticity and
integrity of the plaintext returned from this function may be uncertain at this
time. For authenticated encryption algorithms, authenticity is generally only
established when the application calls decipher.final()
.
Class: DiffieHellman
#
The DiffieHellman
class is a utility for creating Diffie-Hellman key
exchanges.
Instances of the DiffieHellman
class can be created using the
crypto.createDiffieHellman()
function.
import assert from 'node:assert';
const {
createDiffieHellman,
} = await import('node:crypto');
// Generate Alice's keys...
const alice = createDiffieHellman(2048);
const aliceKey = alice.generateKeys();
// Generate Bob's keys...
const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bobKey = bob.generateKeys();
// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);
// OK
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
const assert = require('node:assert');
const {
createDiffieHellman,
} = require('node:crypto');
// Generate Alice's keys...
const alice = createDiffieHellman(2048);
const aliceKey = alice.generateKeys();
// Generate Bob's keys...
const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bobKey = bob.generateKeys();
// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);
// OK
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
#
otherPublicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of anotherPublicKey
string.outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Computes the shared secret using otherPublicKey
as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using the specified inputEncoding
, and secret is
encoded using specified outputEncoding
.
If the inputEncoding
is not
provided, otherPublicKey
is expected to be a Buffer
,
TypedArray
, or DataView
.
If outputEncoding
is given a string is returned; otherwise, a
Buffer
is returned.
diffieHellman.generateKeys([encoding])
#
Generates private and public Diffie-Hellman key values unless they have been
generated or computed already, and returns
the public key in the specified encoding
. This key should be
transferred to the other party.
If encoding
is provided a string is returned; otherwise a
Buffer
is returned.
This function is a thin wrapper around DH_generate_key()
. In particular,
once a private key has been generated or set, calling this function only updates
the public key but does not generate a new private key.
diffieHellman.getGenerator([encoding])
#
Returns the Diffie-Hellman generator in the specified encoding
.
If encoding
is provided a string is
returned; otherwise a Buffer
is returned.
diffieHellman.getPrime([encoding])
#
Returns the Diffie-Hellman prime in the specified encoding
.
If encoding
is provided a string is
returned; otherwise a Buffer
is returned.
diffieHellman.getPrivateKey([encoding])
#
Returns the Diffie-Hellman private key in the specified encoding
.
If encoding
is provided a
string is returned; otherwise a Buffer
is returned.
diffieHellman.getPublicKey([encoding])
#
Returns the Diffie-Hellman public key in the specified encoding
.
If encoding
is provided a
string is returned; otherwise a Buffer
is returned.
diffieHellman.setPrivateKey(privateKey[, encoding])
#
privateKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of theprivateKey
string.
Sets the Diffie-Hellman private key. If the encoding
argument is provided,
privateKey
is expected
to be a string. If no encoding
is provided, privateKey
is expected
to be a Buffer
, TypedArray
, or DataView
.
This function does not automatically compute the associated public key. Either
diffieHellman.setPublicKey()
or diffieHellman.generateKeys()
can be
used to manually provide the public key or to automatically derive it.
diffieHellman.setPublicKey(publicKey[, encoding])
#
publicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thepublicKey
string.
Sets the Diffie-Hellman public key. If the encoding
argument is provided,
publicKey
is expected
to be a string. If no encoding
is provided, publicKey
is expected
to be a Buffer
, TypedArray
, or DataView
.
diffieHellman.verifyError
#
A bit field containing any warnings and/or errors resulting from a check
performed during initialization of the DiffieHellman
object.
The following values are valid for this property (as defined in node:constants
module):
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
Class: DiffieHellmanGroup
#
The DiffieHellmanGroup
class takes a well-known modp group as its argument.
It works the same as DiffieHellman
, except that it does not allow changing
its keys after creation. In other words, it does not implement setPublicKey()
or setPrivateKey()
methods.
const { createDiffieHellmanGroup } = await import('node:crypto');
const dh = createDiffieHellmanGroup('modp16');
const { createDiffieHellmanGroup } = require('node:crypto');
const dh = createDiffieHellmanGroup('modp16');
The following groups are supported:
'modp14'
(2048 bits, RFC 3526 Section 3)'modp15'
(3072 bits, RFC 3526 Section 4)'modp16'
(4096 bits, RFC 3526 Section 5)'modp17'
(6144 bits, RFC 3526 Section 6)'modp18'
(8192 bits, RFC 3526 Section 7)
The following groups are still supported but deprecated (see Caveats):
'modp1'
(768 bits, RFC 2409 Section 6.1)'modp2'
(1024 bits, RFC 2409 Section 6.2)'modp5'
(1536 bits, RFC 3526 Section 2)
These deprecated groups might be removed in future versions of Node.js.
Class: ECDH
#
The ECDH
class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)
key exchanges.
Instances of the ECDH
class can be created using the
crypto.createECDH()
function.
import assert from 'node:assert';
const {
createECDH,
} = await import('node:crypto');
// Generate Alice's keys...
const alice = createECDH('secp521r1');
const aliceKey = alice.generateKeys();
// Generate Bob's keys...
const bob = createECDH('secp521r1');
const bobKey = bob.generateKeys();
// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
// OK
const assert = require('node:assert');
const {
createECDH,
} = require('node:crypto');
// Generate Alice's keys...
const alice = createECDH('secp521r1');
const aliceKey = alice.generateKeys();
// Generate Bob's keys...
const bob = createECDH('secp521r1');
const bobKey = bob.generateKeys();
// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
// OK
Static method: ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])
#
key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>curve
<string>inputEncoding
<string> The encoding of thekey
string.outputEncoding
<string> The encoding of the return value.format
<string> Default:'uncompressed'
- Returns: <Buffer> | <string>
Converts the EC Diffie-Hellman public key specified by key
and curve
to the
format specified by format
. The format
argument specifies point encoding
and can be 'compressed'
, 'uncompressed'
or 'hybrid'
. The supplied key is
interpreted using the specified inputEncoding
, and the returned key is encoded
using the specified outputEncoding
.
Use crypto.getCurves()
to obtain a list of available curve names.
On recent OpenSSL releases, openssl ecparam -list_curves
will also display
the name and description of each available elliptic curve.
If format
is not specified the point will be returned in 'uncompressed'
format.
If the inputEncoding
is not provided, key
is expected to be a Buffer
,
TypedArray
, or DataView
.
Example (uncompressing a key):
const {
createECDH,
ECDH,
} = await import('node:crypto');
const ecdh = createECDH('secp256k1');
ecdh.generateKeys();
const compressedKey = ecdh.getPublicKey('hex', 'compressed');
const uncompressedKey = ECDH.convertKey(compressedKey,
'secp256k1',
'hex',
'hex',
'uncompressed');
// The converted key and the uncompressed public key should be the same
console.log(uncompressedKey === ecdh.getPublicKey('hex'));
const {
createECDH,
ECDH,
} = require('node:crypto');
const ecdh = createECDH('secp256k1');
ecdh.generateKeys();
const compressedKey = ecdh.getPublicKey('hex', 'compressed');
const uncompressedKey = ECDH.convertKey(compressedKey,
'secp256k1',
'hex',
'hex',
'uncompressed');
// The converted key and the uncompressed public key should be the same
console.log(uncompressedKey === ecdh.getPublicKey('hex'));
ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
#
otherPublicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of theotherPublicKey
string.outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Computes the shared secret using otherPublicKey
as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using specified inputEncoding
, and the returned secret
is encoded using the specified outputEncoding
.
If the inputEncoding
is not
provided, otherPublicKey
is expected to be a Buffer
, TypedArray
, or
DataView
.
If outputEncoding
is given a string will be returned; otherwise a
Buffer
is returned.
ecdh.computeSecret
will throw an
ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY
error when otherPublicKey
lies outside of the elliptic curve. Since otherPublicKey
is
usually supplied from a remote user over an insecure network,
be sure to handle this exception accordingly.
ecdh.generateKeys([encoding[, format]])
#
encoding
<string> The encoding of the return value.format
<string> Default:'uncompressed'
- Returns: <Buffer> | <string>
Generates private and public EC Diffie-Hellman key values, and returns
the public key in the specified format
and encoding
. This key should be
transferred to the other party.
The format
argument specifies point encoding and can be 'compressed'
or
'uncompressed'
. If format
is not specified, the point will be returned in
'uncompressed'
format.
If encoding
is provided a string is returned; otherwise a Buffer
is returned.
ecdh.getPrivateKey([encoding])
#
encoding
<string> The encoding of the return value.- Returns: <Buffer> | <string> The EC Diffie-Hellman in the specified
encoding
.
If encoding
is specified, a string is returned; otherwise a Buffer
is
returned.
ecdh.getPublicKey([encoding][, format])
#
encoding
<string> The encoding of the return value.format
<string> Default:'uncompressed'
- Returns: <Buffer> | <string> The EC Diffie-Hellman public key in the specified
encoding
andformat
.
The format
argument specifies point encoding and can be 'compressed'
or
'uncompressed'
. If format
is not specified the point will be returned in
'uncompressed'
format.
If encoding
is specified, a string is returned; otherwise a Buffer
is
returned.
ecdh.setPrivateKey(privateKey[, encoding])
#
privateKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of theprivateKey
string.
Sets the EC Diffie-Hellman private key.
If encoding
is provided, privateKey
is expected
to be a string; otherwise privateKey
is expected to be a Buffer
,
TypedArray
, or DataView
.
If privateKey
is not valid for the curve specified when the ECDH
object was
created, an error is thrown. Upon setting the private key, the associated
public point (key) is also generated and set in the ECDH
object.
ecdh.setPublicKey(publicKey[, encoding])
#
publicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The encoding of thepublicKey
string.
Sets the EC Diffie-Hellman public key.
If encoding
is provided publicKey
is expected to
be a string; otherwise a Buffer
, TypedArray
, or DataView
is expected.
There is not normally a reason to call this method because ECDH
only requires a private key and the other party's public key to compute the
shared secret. Typically either ecdh.generateKeys()
or
ecdh.setPrivateKey()
will be called. The ecdh.setPrivateKey()
method
attempts to generate the public point/key associated with the private key being
set.
Example (obtaining a shared secret):
const {
createECDH,
createHash,
} = await import('node:crypto');
const alice = createECDH('secp256k1');
const bob = createECDH('secp256k1');
// This is a shortcut way of specifying one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
createHash('sha256').update('alice', 'utf8').digest(),
);
// Bob uses a newly generated cryptographically strong
// pseudorandom key pair
bob.generateKeys();
const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
// aliceSecret and bobSecret should be the same shared secret value
console.log(aliceSecret === bobSecret);
const {
createECDH,
createHash,
} = require('node:crypto');
const alice = createECDH('secp256k1');
const bob = createECDH('secp256k1');
// This is a shortcut way of specifying one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
createHash('sha256').update('alice', 'utf8').digest(),
);
// Bob uses a newly generated cryptographically strong
// pseudorandom key pair
bob.generateKeys();
const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
// aliceSecret and bobSecret should be the same shared secret value
console.log(aliceSecret === bobSecret);
Class: Hash
#
- Extends: <stream.Transform>
The Hash
class is a utility for creating hash digests of data. It can be
used in one of two ways:
- As a stream that is both readable and writable, where data is written to produce a computed hash digest on the readable side, or
- Using the
hash.update()
andhash.digest()
methods to produce the computed hash.
The crypto.createHash()
method is used to create Hash
instances. Hash
objects are not to be created directly using the new
keyword.
Example: Using Hash
objects as streams:
const {
createHash,
} = await import('node:crypto');
const hash = createHash('sha256');
hash.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = hash.read();
if (data) {
console.log(data.toString('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
}
});
hash.write('some data to hash');
hash.end();
const {
createHash,
} = require('node:crypto');
const hash = createHash('sha256');
hash.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = hash.read();
if (data) {
console.log(data.toString('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
}
});
hash.write('some data to hash');
hash.end();
Example: Using Hash
and piped streams:
import { createReadStream } from 'node:fs';
import { stdout } from 'node:process';
const { createHash } = await import('node:crypto');
const hash = createHash('sha256');
const input = createReadStream('test.js');
input.pipe(hash).setEncoding('hex').pipe(stdout);
const { createReadStream } = require('node:fs');
const { createHash } = require('node:crypto');
const { stdout } = require('node:process');
const hash = createHash('sha256');
const input = createReadStream('test.js');
input.pipe(hash).setEncoding('hex').pipe(stdout);
Example: Using the hash.update()
and hash.digest()
methods:
const {
createHash,
} = await import('node:crypto');
const hash = createHash('sha256');
hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
const {
createHash,
} = require('node:crypto');
const hash = createHash('sha256');
hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
hash.copy([options])
#
options
<Object>stream.transform
options- Returns: <Hash>
Creates a new Hash
object that contains a deep copy of the internal state
of the current Hash
object.
The optional options
argument controls stream behavior. For XOF hash
functions such as 'shake256'
, the outputLength
option can be used to
specify the desired output length in bytes.
An error is thrown when an attempt is made to copy the Hash
object after
its hash.digest()
method has been called.
// Calculate a rolling hash.
const {
createHash,
} = await import('node:crypto');
const hash = createHash('sha256');
hash.update('one');
console.log(hash.copy().digest('hex'));
hash.update('two');
console.log(hash.copy().digest('hex'));
hash.update('three');
console.log(hash.copy().digest('hex'));
// Etc.
// Calculate a rolling hash.
const {
createHash,
} = require('node:crypto');
const hash = createHash('sha256');
hash.update('one');
console.log(hash.copy().digest('hex'));
hash.update('two');
console.log(hash.copy().digest('hex'));
hash.update('three');
console.log(hash.copy().digest('hex'));
// Etc.
hash.digest([encoding])
#
Calculates the digest of all of the data passed to be hashed (using the
hash.update()
method).
If encoding
is provided a string will be returned; otherwise
a Buffer
is returned.
The Hash
object can not be used again after hash.digest()
method has been
called. Multiple calls will cause an error to be thrown.
hash.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of thedata
string.
Updates the hash content with the given data
, the encoding of which
is given in inputEncoding
.
If encoding
is not provided, and the data
is a string, an
encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or
DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
Class: Hmac
#
- Extends: <stream.Transform>
The Hmac
class is a utility for creating cryptographic HMAC digests. It can
be used in one of two ways:
- As a stream that is both readable and writable, where data is written to produce a computed HMAC digest on the readable side, or
- Using the
hmac.update()
andhmac.digest()
methods to produce the computed HMAC digest.
The crypto.createHmac()
method is used to create Hmac
instances. Hmac
objects are not to be created directly using the new
keyword.
Example: Using Hmac
objects as streams:
const {
createHmac,
} = await import('node:crypto');
const hmac = createHmac('sha256', 'a secret');
hmac.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = hmac.read();
if (data) {
console.log(data.toString('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
}
});
hmac.write('some data to hash');
hmac.end();
const {
createHmac,
} = require('node:crypto');
const hmac = createHmac('sha256', 'a secret');
hmac.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = hmac.read();
if (data) {
console.log(data.toString('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
}
});
hmac.write('some data to hash');
hmac.end();
Example: Using Hmac
and piped streams:
import { createReadStream } from 'node:fs';
import { stdout } from 'node:process';
const {
createHmac,
} = await import('node:crypto');
const hmac = createHmac('sha256', 'a secret');
const input = createReadStream('test.js');
input.pipe(hmac).pipe(stdout);
const {
createReadStream,
} = require('node:fs');
const {
createHmac,
} = require('node:crypto');
const { stdout } = require('node:process');
const hmac = createHmac('sha256', 'a secret');
const input = createReadStream('test.js');
input.pipe(hmac).pipe(stdout);
Example: Using the hmac.update()
and hmac.digest()
methods:
const {
createHmac,
} = await import('node:crypto');
const hmac = createHmac('sha256', 'a secret');
hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
const {
createHmac,
} = require('node:crypto');
const hmac = createHmac('sha256', 'a secret');
hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
hmac.digest([encoding])
#
Calculates the HMAC digest of all of the data passed using hmac.update()
.
If encoding
is
provided a string is returned; otherwise a Buffer
is returned;
The Hmac
object can not be used again after hmac.digest()
has been
called. Multiple calls to hmac.digest()
will result in an error being thrown.
hmac.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of thedata
string.
Updates the Hmac
content with the given data
, the encoding of which
is given in inputEncoding
.
If encoding
is not provided, and the data
is a string, an
encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or
DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
Class: KeyObject
#
Node.js uses a KeyObject
class to represent a symmetric or asymmetric key,
and each kind of key exposes different functions. The
crypto.createSecretKey()
, crypto.createPublicKey()
and
crypto.createPrivateKey()
methods are used to create KeyObject
instances. KeyObject
objects are not to be created directly using the new
keyword.
Most applications should consider using the new KeyObject
API instead of
passing keys as strings or Buffer
s due to improved security features.
KeyObject
instances can be passed to other threads via postMessage()
.
The receiver obtains a cloned KeyObject
, and the KeyObject
does not need to
be listed in the transferList
argument.
Static method: KeyObject.from(key)
#
key
<CryptoKey>- Returns: <KeyObject>
Example: Converting a CryptoKey
instance to a KeyObject
:
const { KeyObject } = await import('node:crypto');
const { subtle } = globalThis.crypto;
const key = await subtle.generateKey({
name: 'HMAC',
hash: 'SHA-256',
length: 256,
}, true, ['sign', 'verify']);
const keyObject = KeyObject.from(key);
console.log(keyObject.symmetricKeySize);
// Prints: 32 (symmetric key size in bytes)
const { KeyObject } = require('node:crypto');
const { subtle } = globalThis.crypto;
(async function() {
const key = await subtle.generateKey({
name: 'HMAC',
hash: 'SHA-256',
length: 256,
}, true, ['sign', 'verify']);
const keyObject = KeyObject.from(key);
console.log(keyObject.symmetricKeySize);
// Prints: 32 (symmetric key size in bytes)
})();
keyObject.asymmetricKeyDetails
#
- Type: <Object>
modulusLength
<number> Key size in bits (RSA, DSA).publicExponent
<bigint> Public exponent (RSA).hashAlgorithm
<string> Name of the message digest (RSA-PSS).mgf1HashAlgorithm
<string> Name of the message digest used by MGF1 (RSA-PSS).saltLength
<number> Minimal salt length in bytes (RSA-PSS).divisorLength
<number> Size ofq
in bits (DSA).namedCurve
<string> Name of the curve (EC).
This property exists only on asymmetric keys. Depending on the type of the key, this object contains information about the key. None of the information obtained through this property can be used to uniquely identify a key or to compromise the security of the key.
For RSA-PSS keys, if the key material contains a RSASSA-PSS-params
sequence,
the hashAlgorithm
, mgf1HashAlgorithm
, and saltLength
properties will be
set.
Other key details might be exposed via this API using additional attributes.
keyObject.asymmetricKeyType
#
- Type: <string>
For asymmetric keys, this property represents the type of the key. See the supported asymmetric key types.
This property is undefined
for unrecognized KeyObject
types and symmetric
keys.
keyObject.equals(otherKeyObject)
#
otherKeyObject
<KeyObject> AKeyObject
with which to comparekeyObject
.- Returns: <boolean>
Returns true
or false
depending on whether the keys have exactly the same
type, value, and parameters. This method is not
constant time.
keyObject.export([options])
#
For symmetric keys, the following encoding options can be used:
format
<string> Must be'buffer'
(default) or'jwk'
.
For public keys, the following encoding options can be used:
type
<string> Must be one of'pkcs1'
(RSA only) or'spki'
.format
<string> Must be'pem'
,'der'
, or'jwk'
.
For private keys, the following encoding options can be used:
type
<string> Must be one of'pkcs1'
(RSA only),'pkcs8'
or'sec1'
(EC only).format
<string> Must be'pem'
,'der'
, or'jwk'
.cipher
<string> If specified, the private key will be encrypted with the givencipher
andpassphrase
using PKCS#5 v2.0 password based encryption.passphrase
<string> | <Buffer> The passphrase to use for encryption, seecipher
.
The result type depends on the selected encoding format, when PEM the result is a string, when DER it will be a buffer containing the data encoded as DER, when JWK it will be an object.
When JWK encoding format was selected, all other encoding options are ignored.
PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of
the cipher
and format
options. The PKCS#8 type
can be used with any
format
to encrypt any key algorithm (RSA, EC, or DH) by specifying a
cipher
. PKCS#1 and SEC1 can only be encrypted by specifying a cipher
when the PEM format
is used. For maximum compatibility, use PKCS#8 for
encrypted private keys. Since PKCS#8 defines its own
encryption mechanism, PEM-level encryption is not supported when encrypting
a PKCS#8 key. See RFC 5208 for PKCS#8 encryption and RFC 1421 for
PKCS#1 and SEC1 encryption.
keyObject.symmetricKeySize
#
- Type: <number>
For secret keys, this property represents the size of the key in bytes. This
property is undefined
for asymmetric keys.
keyObject.toCryptoKey(algorithm, extractable, keyUsages)
#
algorithm
<string> | <Algorithm> | <RsaHashedImportParams> | <EcKeyImportParams> | <HmacImportParams>
extractable
<boolean>keyUsages
<string[]> See Key usages.- Returns: <CryptoKey>
Converts a KeyObject
instance to a CryptoKey
.
Class: Sign
#
- Extends: <stream.Writable>
The Sign
class is a utility for generating signatures. It can be used in one
of two ways:
- As a writable stream, where data to be signed is written and the
sign.sign()
method is used to generate and return the signature, or - Using the
sign.update()
andsign.sign()
methods to produce the signature.
The crypto.createSign()
method is used to create Sign
instances. The
argument is the string name of the hash function to use. Sign
objects are not
to be created directly using the new
keyword.
Example: Using Sign
and Verify
objects as streams:
const {
generateKeyPairSync,
createSign,
createVerify,
} = await import('node:crypto');
const { privateKey, publicKey } = generateKeyPairSync('ec', {
namedCurve: 'sect239k1',
});
const sign = createSign('SHA256');
sign.write('some data to sign');
sign.end();
const signature = sign.sign(privateKey, 'hex');
const verify = createVerify('SHA256');
verify.write('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature, 'hex'));
// Prints: true
const {
generateKeyPairSync,
createSign,
createVerify,
} = require('node:crypto');
const { privateKey, publicKey } = generateKeyPairSync('ec', {
namedCurve: 'sect239k1',
});
const sign = createSign('SHA256');
sign.write('some data to sign');
sign.end();
const signature = sign.sign(privateKey, 'hex');
const verify = createVerify('SHA256');
verify.write('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature, 'hex'));
// Prints: true
Example: Using the sign.update()
and verify.update()
methods:
const {
generateKeyPairSync,
createSign,
createVerify,
} = await import('node:crypto');
const { privateKey, publicKey } = generateKeyPairSync('rsa', {
modulusLength: 2048,
});
const sign = createSign('SHA256');
sign.update('some data to sign');
sign.end();
const signature = sign.sign(privateKey);
const verify = createVerify('SHA256');
verify.update('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature));
// Prints: true
const {
generateKeyPairSync,
createSign,
createVerify,
} = require('node:crypto');
const { privateKey, publicKey } = generateKeyPairSync('rsa', {
modulusLength: 2048,
});
const sign = createSign('SHA256');
sign.update('some data to sign');
sign.end();
const signature = sign.sign(privateKey);
const verify = createVerify('SHA256');
verify.update('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature));
// Prints: true
sign.sign(privateKey[, outputEncoding])
#
privateKey
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>outputEncoding
<string> The encoding of the return value.- Returns: <Buffer> | <string>
Calculates the signature on all the data passed through using either
sign.update()
or sign.write()
.
If privateKey
is not a KeyObject
, this function behaves as if
privateKey
had been passed to crypto.createPrivateKey()
. If it is an
object, the following additional properties can be passed:
-
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:'der'
(default): DER-encoded ASN.1 signature structure encoding(r, s)
.'ieee-p1363'
: Signature formatr || s
as proposed in IEEE-P1363.
-
padding
<integer> Optional padding value for RSA, one of the following:crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055. -
saltLength
<integer> Salt length for when padding isRSA_PKCS1_PSS_PADDING
. The special valuecrypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size,crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN
(default) sets it to the maximum permissible value.
If outputEncoding
is provided a string is returned; otherwise a Buffer
is returned.
The Sign
object can not be again used after sign.sign()
method has been
called. Multiple calls to sign.sign()
will result in an error being thrown.
sign.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of thedata
string.
Updates the Sign
content with the given data
, the encoding of which
is given in inputEncoding
.
If encoding
is not provided, and the data
is a string, an
encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or
DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
Class: Verify
#
- Extends: <stream.Writable>
The Verify
class is a utility for verifying signatures. It can be used in one
of two ways:
- As a writable stream where written data is used to validate against the supplied signature, or
- Using the
verify.update()
andverify.verify()
methods to verify the signature.
The crypto.createVerify()
method is used to create Verify
instances.
Verify
objects are not to be created directly using the new
keyword.
See Sign
for examples.
verify.update(data[, inputEncoding])
#
data
<string> | <Buffer> | <TypedArray> | <DataView>inputEncoding
<string> The encoding of thedata
string.
Updates the Verify
content with the given data
, the encoding of which
is given in inputEncoding
.
If inputEncoding
is not provided, and the data
is a string, an
encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or
DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
verify.verify(object, signature[, signatureEncoding])
#
object
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>signature
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>signatureEncoding
<string> The encoding of thesignature
string.- Returns: <boolean>
true
orfalse
depending on the validity of the signature for the data and public key.
Verifies the provided data using the given object
and signature
.
If object
is not a KeyObject
, this function behaves as if
object
had been passed to crypto.createPublicKey()
. If it is an
object, the following additional properties can be passed:
-
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following:'der'
(default): DER-encoded ASN.1 signature structure encoding(r, s)
.'ieee-p1363'
: Signature formatr || s
as proposed in IEEE-P1363.
-
padding
<integer> Optional padding value for RSA, one of the following:crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to verify the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055. -
saltLength
<integer> Salt length for when padding isRSA_PKCS1_PSS_PADDING
. The special valuecrypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size,crypto.constants.RSA_PSS_SALTLEN_AUTO
(default) causes it to be determined automatically.
The signature
argument is the previously calculated signature for the data, in
the signatureEncoding
.
If a signatureEncoding
is specified, the signature
is expected to be a
string; otherwise signature
is expected to be a Buffer
,
TypedArray
, or DataView
.
The verify
object can not be used again after verify.verify()
has been
called. Multiple calls to verify.verify()
will result in an error being
thrown.
Because public keys can be derived from private keys, a private key may be passed instead of a public key.
Class: X509Certificate
#
Encapsulates an X509 certificate and provides read-only access to its information.
const { X509Certificate } = await import('node:crypto');
const x509 = new X509Certificate('{... pem encoded cert ...}');
console.log(x509.subject);
const { X509Certificate } = require('node:crypto');
const x509 = new X509Certificate('{... pem encoded cert ...}');
console.log(x509.subject);
new X509Certificate(buffer)
#
buffer
<string> | <TypedArray> | <Buffer> | <DataView> A PEM or DER encoded X509 Certificate.
x509.checkEmail(email[, options])
#
email
<string>options
<Object>subject
<string>'default'
,'always'
, or'never'
. Default:'default'
.
- Returns: <string> | <undefined> Returns
email
if the certificate matches,undefined
if it does not.
Checks whether the certificate matches the given email address.
If the 'subject'
option is undefined or set to 'default'
, the certificate
subject is only considered if the subject alternative name extension either does
not exist or does not contain any email addresses.
If the 'subject'
option is set to 'always'
and if the subject alternative
name extension either does not exist or does not contain a matching email
address, the certificate subject is considered.
If the 'subject'
option is set to 'never'
, the certificate subject is never
considered, even if the certificate contains no subject alternative names.
x509.checkHost(name[, options])
#
name
<string>options
<Object>- Returns: <string> | <undefined> Returns a subject name that matches
name
, orundefined
if no subject name matchesname
.
Checks whether the certificate matches the given host name.
If the certificate matches the given host name, the matching subject name is
returned. The returned name might be an exact match (e.g., foo.example.com
)
or it might contain wildcards (e.g., *.example.com
). Because host name
comparisons are case-insensitive, the returned subject name might also differ
from the given name
in capitalization.
If the 'subject'
option is undefined or set to 'default'
, the certificate
subject is only considered if the subject alternative name extension either does
not exist or does not contain any DNS names. This behavior is consistent with
RFC 2818 ("HTTP Over TLS").
If the 'subject'
option is set to 'always'
and if the subject alternative
name extension either does not exist or does not contain a matching DNS name,
the certificate subject is considered.
If the 'subject'
option is set to 'never'
, the certificate subject is never
considered, even if the certificate contains no subject alternative names.
x509.checkIP(ip)
#
ip
<string>- Returns: <string> | <undefined> Returns
ip
if the certificate matches,undefined
if it does not.
Checks whether the certificate matches the given IP address (IPv4 or IPv6).
Only RFC 5280 iPAddress
subject alternative names are considered, and they
must match the given ip
address exactly. Other subject alternative names as
well as the subject field of the certificate are ignored.
x509.checkIssued(otherCert)
#
otherCert
<X509Certificate>- Returns: <boolean>
Checks whether this certificate was potentially issued by the given otherCert
by comparing the certificate metadata.
This is useful for pruning a list of possible issuer certificates which have been selected using a more rudimentary filtering routine, i.e. just based on subject and issuer names.
Finally, to verify that this certificate's signature was produced by a private key
corresponding to otherCert
's public key use x509.verify(publicKey)
with otherCert
's public key represented as a KeyObject
like so
if (!x509.verify(otherCert.publicKey)) {
throw new Error('otherCert did not issue x509');
}
x509.checkPrivateKey(privateKey)
#
privateKey
<KeyObject> A private key.- Returns: <boolean>
Checks whether the public key for this certificate is consistent with the given private key.
x509.fingerprint
#
- Type: <string>
The SHA-1 fingerprint of this certificate.
Because SHA-1 is cryptographically broken and because the security of SHA-1 is
significantly worse than that of algorithms that are commonly used to sign
certificates, consider using x509.fingerprint256
instead.
x509.fingerprint512
#
- Type: <string>
The SHA-512 fingerprint of this certificate.
Because computing the SHA-256 fingerprint is usually faster and because it is
only half the size of the SHA-512 fingerprint, x509.fingerprint256
may be
a better choice. While SHA-512 presumably provides a higher level of security in
general, the security of SHA-256 matches that of most algorithms that are
commonly used to sign certificates.
x509.infoAccess
#
- Type: <string>
A textual representation of the certificate's authority information access extension.
This is a line feed separated list of access descriptions. Each line begins with the access method and the kind of the access location, followed by a colon and the value associated with the access location.
After the prefix denoting the access method and the kind of the access location, the remainder of each line might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.
x509.issuerCertificate
#
- Type: <X509Certificate>
The issuer certificate or undefined
if the issuer certificate is not
available.
x509.serialNumber
#
- Type: <string>
The serial number of this certificate.
Serial numbers are assigned by certificate authorities and do not uniquely
identify certificates. Consider using x509.fingerprint256
as a unique
identifier instead.
x509.subjectAltName
#
- Type: <string>
The subject alternative name specified for this certificate.
This is a comma-separated list of subject alternative names. Each entry begins with a string identifying the kind of the subject alternative name followed by a colon and the value associated with the entry.
Earlier versions of Node.js incorrectly assumed that it is safe to split this
property at the two-character sequence ', '
(see CVE-2021-44532). However,
both malicious and legitimate certificates can contain subject alternative names
that include this sequence when represented as a string.
After the prefix denoting the type of the entry, the remainder of each entry might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.
x509.toJSON()
#
- Type: <string>
There is no standard JSON encoding for X509 certificates. The
toJSON()
method returns a string containing the PEM encoded
certificate.
x509.toLegacyObject()
#
- Type: <Object>
Returns information about this certificate using the legacy certificate object encoding.
x509.validFromDate
#
- Type: <Date>
The date/time from which this certificate is valid, encapsulated in a Date
object.
x509.validToDate
#
- Type: <Date>
The date/time until which this certificate is valid, encapsulated in a Date
object.
x509.verify(publicKey)
#
publicKey
<KeyObject> A public key.- Returns: <boolean>
Verifies that this certificate was signed by the given public key. Does not perform any other validation checks on the certificate.
node:crypto
module methods and properties#
crypto.argon2(algorithm, parameters, callback)
#
algorithm
<string> Variant of Argon2, one of"argon2d"
,"argon2i"
or"argon2id"
.parameters
<Object>message
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> REQUIRED, this is the password for password hashing applications of Argon2.nonce
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> REQUIRED, must be at least 8 bytes long. This is the salt for password hashing applications of Argon2.parallelism
<number> REQUIRED, degree of parallelism determines how many computational chains (lanes) can be run. Must be greater than 1 and less than2**24-1
.tagLength
<number> REQUIRED, the length of the key to generate. Must be greater than 4 and less than2**32-1
.memory
<number> REQUIRED, memory cost in 1KiB blocks. Must be greater than8 * parallelism
and less than2**32-1
. The actual number of blocks is rounded down to the nearest multiple of4 * parallelism
.passes
<number> REQUIRED, number of passes (iterations). Must be greater than 1 and less than2**32-1
.secret
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <undefined> OPTIONAL, Random additional input, similar to the salt, that should NOT be stored with the derived key. This is known as pepper in password hashing applications. If used, must have a length not greater than2**32-1
bytes.associatedData
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <undefined> OPTIONAL, Additional data to be added to the hash, functionally equivalent to salt or secret, but meant for non-random data. If used, must have a length not greater than2**32-1
bytes.
callback
<Function>
Provides an asynchronous Argon2 implementation. Argon2 is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.
The nonce
should be as unique as possible. It is recommended that a nonce is
random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for message
, nonce
, secret
or associatedData
, please
consider caveats when using strings as inputs to cryptographic APIs.
The callback
function is called with two arguments: err
and derivedKey
.
err
is an exception object when key derivation fails, otherwise err
is
null
. derivedKey
is passed to the callback as a Buffer
.
An exception is thrown when any of the input arguments specify invalid values or types.
const { argon2, randomBytes } = await import('node:crypto');
const parameters = {
message: 'password',
nonce: randomBytes(16),
parallelism: 4,
tagLength: 64,
memory: 65536,
passes: 3,
};
argon2('argon2id', parameters, (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey.toString('hex')); // 'af91dad...9520f15'
});
const { argon2, randomBytes } = require('node:crypto');
const parameters = {
message: 'password',
nonce: randomBytes(16),
parallelism: 4,
tagLength: 64,
memory: 65536,
passes: 3,
};
argon2('argon2id', parameters, (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey.toString('hex')); // 'af91dad...9520f15'
});
crypto.argon2Sync(algorithm, parameters)
#
algorithm
<string> Variant of Argon2, one of"argon2d"
,"argon2i"
or"argon2id"
.parameters
<Object>message
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> REQUIRED, this is the password for password hashing applications of Argon2.nonce
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> REQUIRED, must be at least 8 bytes long. This is the salt for password hashing applications of Argon2.parallelism
<number> REQUIRED, degree of parallelism determines how many computational chains (lanes) can be run. Must be greater than 1 and less than2**24-1
.tagLength
<number> REQUIRED, the length of the key to generate. Must be greater than 4 and less than2**32-1
.memory
<number> REQUIRED, memory cost in 1KiB blocks. Must be greater than8 * parallelism
and less than2**32-1
. The actual number of blocks is rounded down to the nearest multiple of4 * parallelism
.passes
<number> REQUIRED, number of passes (iterations). Must be greater than 1 and less than2**32-1
.secret
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <undefined> OPTIONAL, Random additional input, similar to the salt, that should NOT be stored with the derived key. This is known as pepper in password hashing applications. If used, must have a length not greater than2**32-1
bytes.associatedData
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <undefined> OPTIONAL, Additional data to be added to the hash, functionally equivalent to salt or secret, but meant for non-random data. If used, must have a length not greater than2**32-1
bytes.
- Returns: <Buffer>
Provides a synchronous Argon2 implementation. Argon2 is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.
The nonce
should be as unique as possible. It is recommended that a nonce is
random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for message
, nonce
, secret
or associatedData
, please
consider caveats when using strings as inputs to cryptographic APIs.
An exception is thrown when key derivation fails, otherwise the derived key is
returned as a Buffer
.
An exception is thrown when any of the input arguments specify invalid values or types.
const { argon2Sync, randomBytes } = await import('node:crypto');
const parameters = {
message: 'password',
nonce: randomBytes(16),
parallelism: 4,
tagLength: 64,
memory: 65536,
passes: 3,
};
const derivedKey = argon2Sync('argon2id', parameters);
console.log(derivedKey.toString('hex')); // 'af91dad...9520f15'
const { argon2Sync, randomBytes } = require('node:crypto');
const parameters = {
message: 'password',
nonce: randomBytes(16),
parallelism: 4,
tagLength: 64,
memory: 65536,
passes: 3,
};
const derivedKey = argon2Sync('argon2id', parameters);
console.log(derivedKey.toString('hex')); // 'af91dad...9520f15'
crypto.checkPrime(candidate[, options], callback)
#
candidate
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> A possible prime encoded as a sequence of big endian octets of arbitrary length.options
<Object>checks
<number> The number of Miller-Rabin probabilistic primality iterations to perform. When the value is0
(zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for theBN_is_prime_ex
functionnchecks
options for more details. Default:0
callback
<Function>
Checks the primality of the candidate
.
crypto.checkPrimeSync(candidate[, options])
#
candidate
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> A possible prime encoded as a sequence of big endian octets of arbitrary length.options
<Object>checks
<number> The number of Miller-Rabin probabilistic primality iterations to perform. When the value is0
(zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for theBN_is_prime_ex
functionnchecks
options for more details. Default:0
- Returns: <boolean>
true
if the candidate is a prime with an error probability less than0.25 ** options.checks
.
Checks the primality of the candidate
.
crypto.constants
#
- Type: <Object>
An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in Crypto constants.
crypto.createCipheriv(algorithm, key, iv[, options])
#
algorithm
<string>key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>iv
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <null>options
<Object>stream.transform
options- Returns: <Cipheriv>
Creates and returns a Cipheriv
object, with the given algorithm
, key
and
initialization vector (iv
).
The options
argument controls stream behavior and is optional except when a
cipher in CCM or OCB mode (e.g. 'aes-128-ccm'
) is used. In that case, the
authTagLength
option is required and specifies the length of the
authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength
option is not required but can be used to set the length of the authentication
tag that will be returned by getAuthTag()
and defaults to 16 bytes.
For chacha20-poly1305
, the authTagLength
option defaults to 16 bytes.
The algorithm
is dependent on OpenSSL, examples are 'aes192'
, etc. On
recent OpenSSL releases, openssl list -cipher-algorithms
will
display the available cipher algorithms.
The key
is the raw key used by the algorithm
and iv
is an
initialization vector. Both arguments must be 'utf8'
encoded strings,
Buffers, TypedArray
, or DataView
s. The key
may optionally be
a KeyObject
of type secret
. If the cipher does not need
an initialization vector, iv
may be null
.
When passing strings for key
or iv
, please consider
caveats when using strings as inputs to cryptographic APIs.
Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.
crypto.createDecipheriv(algorithm, key, iv[, options])
#
algorithm
<string>key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>iv
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <null>options
<Object>stream.transform
options- Returns: <Decipheriv>
Creates and returns a Decipheriv
object that uses the given algorithm
, key
and initialization vector (iv
).
The options
argument controls stream behavior and is optional except when a
cipher in CCM or OCB mode (e.g. 'aes-128-ccm'
) is used. In that case, the
authTagLength
option is required and specifies the length of the
authentication tag in bytes, see CCM mode.
For AES-GCM and chacha20-poly1305
, the authTagLength
option defaults to 16
bytes and must be set to a different value if a different length is used.
The algorithm
is dependent on OpenSSL, examples are 'aes192'
, etc. On
recent OpenSSL releases, openssl list -cipher-algorithms
will
display the available cipher algorithms.
The key
is the raw key used by the algorithm
and iv
is an
initialization vector. Both arguments must be 'utf8'
encoded strings,
Buffers, TypedArray
, or DataView
s. The key
may optionally be
a KeyObject
of type secret
. If the cipher does not need
an initialization vector, iv
may be null
.
When passing strings for key
or iv
, please consider
caveats when using strings as inputs to cryptographic APIs.
Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.
crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])
#
prime
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>primeEncoding
<string> The encoding of theprime
string.generator
<number> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Default:2
generatorEncoding
<string> The encoding of thegenerator
string.- Returns: <DiffieHellman>
Creates a DiffieHellman
key exchange object using the supplied prime
and an
optional specific generator
.
The generator
argument can be a number, string, or Buffer
. If
generator
is not specified, the value 2
is used.
If primeEncoding
is specified, prime
is expected to be a string; otherwise
a Buffer
, TypedArray
, or DataView
is expected.
If generatorEncoding
is specified, generator
is expected to be a string;
otherwise a number, Buffer
, TypedArray
, or DataView
is expected.
crypto.createDiffieHellman(primeLength[, generator])
#
primeLength
<number>generator
<number> Default:2
- Returns: <DiffieHellman>
Creates a DiffieHellman
key exchange object and generates a prime of
primeLength
bits using an optional specific numeric generator
.
If generator
is not specified, the value 2
is used.
crypto.createDiffieHellmanGroup(name)
#
name
<string>- Returns: <DiffieHellmanGroup>
An alias for crypto.getDiffieHellman()
crypto.createECDH(curveName)
#
Creates an Elliptic Curve Diffie-Hellman (ECDH
) key exchange object using a
predefined curve specified by the curveName
string. Use
crypto.getCurves()
to obtain a list of available curve names. On recent
OpenSSL releases, openssl ecparam -list_curves
will also display the name
and description of each available elliptic curve.
crypto.createHash(algorithm[, options])
#
algorithm
<string>options
<Object>stream.transform
options- Returns: <Hash>
Creates and returns a Hash
object that can be used to generate hash digests
using the given algorithm
. Optional options
argument controls stream
behavior. For XOF hash functions such as 'shake256'
, the outputLength
option
can be used to specify the desired output length in bytes.
The algorithm
is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are 'sha256'
, 'sha512'
, etc.
On recent releases of OpenSSL, openssl list -digest-algorithms
will
display the available digest algorithms.
Example: generating the sha256 sum of a file
import {
createReadStream,
} from 'node:fs';
import { argv } from 'node:process';
const {
createHash,
} = await import('node:crypto');
const filename = argv[2];
const hash = createHash('sha256');
const input = createReadStream(filename);
input.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = input.read();
if (data)
hash.update(data);
else {
console.log(`${hash.digest('hex')} ${filename}`);
}
});
const {
createReadStream,
} = require('node:fs');
const {
createHash,
} = require('node:crypto');
const { argv } = require('node:process');
const filename = argv[2];
const hash = createHash('sha256');
const input = createReadStream(filename);
input.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = input.read();
if (data)
hash.update(data);
else {
console.log(`${hash.digest('hex')} ${filename}`);
}
});
crypto.createHmac(algorithm, key[, options])
#
algorithm
<string>key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>options
<Object>stream.transform
optionsencoding
<string> The string encoding to use whenkey
is a string.
- Returns: <Hmac>
Creates and returns an Hmac
object that uses the given algorithm
and key
.
Optional options
argument controls stream behavior.
The algorithm
is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are 'sha256'
, 'sha512'
, etc.
On recent releases of OpenSSL, openssl list -digest-algorithms
will
display the available digest algorithms.
The key
is the HMAC key used to generate the cryptographic HMAC hash. If it is
a KeyObject
, its type must be secret
. If it is a string, please consider
caveats when using strings as inputs to cryptographic APIs. If it was
obtained from a cryptographically secure source of entropy, such as
crypto.randomBytes()
or crypto.generateKey()
, its length should not
exceed the block size of algorithm
(e.g., 512 bits for SHA-256).
Example: generating the sha256 HMAC of a file
import {
createReadStream,
} from 'node:fs';
import { argv } from 'node:process';
const {
createHmac,
} = await import('node:crypto');
const filename = argv[2];
const hmac = createHmac('sha256', 'a secret');
const input = createReadStream(filename);
input.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = input.read();
if (data)
hmac.update(data);
else {
console.log(`${hmac.digest('hex')} ${filename}`);
}
});
const {
createReadStream,
} = require('node:fs');
const {
createHmac,
} = require('node:crypto');
const { argv } = require('node:process');
const filename = argv[2];
const hmac = createHmac('sha256', 'a secret');
const input = createReadStream(filename);
input.on('readable', () => {
// Only one element is going to be produced by the
// hash stream.
const data = input.read();
if (data)
hmac.update(data);
else {
console.log(`${hmac.digest('hex')} ${filename}`);
}
});
crypto.createPrivateKey(key)
#
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <Object> The key material, either in PEM, DER, or JWK format.format
<string> Must be'pem'
,'der'
, or ''jwk'
. Default:'pem'
.type
<string> Must be'pkcs1'
,'pkcs8'
or'sec1'
. This option is required only if theformat
is'der'
and ignored otherwise.passphrase
<string> | <Buffer> The passphrase to use for decryption.encoding
<string> The string encoding to use whenkey
is a string.
- Returns: <KeyObject>
Creates and returns a new key object containing a private key. If key
is a
string or Buffer
, format
is assumed to be 'pem'
; otherwise, key
must be an object with the properties described above.
If the private key is encrypted, a passphrase
must be specified. The length
of the passphrase is limited to 1024 bytes.
crypto.createPublicKey(key)
#
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <Object> The key material, either in PEM, DER, or JWK format.format
<string> Must be'pem'
,'der'
, or'jwk'
. Default:'pem'
.type
<string> Must be'pkcs1'
or'spki'
. This option is required only if theformat
is'der'
and ignored otherwise.encoding
<string> The string encoding to use whenkey
is a string.
- Returns: <KeyObject>
Creates and returns a new key object containing a public key. If key
is a
string or Buffer
, format
is assumed to be 'pem'
; if key
is a KeyObject
with type 'private'
, the public key is derived from the given private key;
otherwise, key
must be an object with the properties described above.
If the format is 'pem'
, the 'key'
may also be an X.509 certificate.
Because public keys can be derived from private keys, a private key may be
passed instead of a public key. In that case, this function behaves as if
crypto.createPrivateKey()
had been called, except that the type of the
returned KeyObject
will be 'public'
and that the private key cannot be
extracted from the returned KeyObject
. Similarly, if a KeyObject
with type
'private'
is given, a new KeyObject
with type 'public'
will be returned
and it will be impossible to extract the private key from the returned object.
crypto.createSecretKey(key[, encoding])
#
key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>encoding
<string> The string encoding whenkey
is a string.- Returns: <KeyObject>
Creates and returns a new key object containing a secret key for symmetric
encryption or Hmac
.
crypto.createSign(algorithm[, options])
#
algorithm
<string>options
<Object>stream.Writable
options- Returns: <Sign>
Creates and returns a Sign
object that uses the given algorithm
. Use
crypto.getHashes()
to obtain the names of the available digest algorithms.
Optional options
argument controls the stream.Writable
behavior.
In some cases, a Sign
instance can be created using the name of a signature
algorithm, such as 'RSA-SHA256'
, instead of a digest algorithm. This will use
the corresponding digest algorithm. This does not work for all signature
algorithms, such as 'ecdsa-with-SHA256'
, so it is best to always use digest
algorithm names.
crypto.createVerify(algorithm[, options])
#
algorithm
<string>options
<Object>stream.Writable
options- Returns: <Verify>
Creates and returns a Verify
object that uses the given algorithm.
Use crypto.getHashes()
to obtain an array of names of the available
signing algorithms. Optional options
argument controls the
stream.Writable
behavior.
In some cases, a Verify
instance can be created using the name of a signature
algorithm, such as 'RSA-SHA256'
, instead of a digest algorithm. This will use
the corresponding digest algorithm. This does not work for all signature
algorithms, such as 'ecdsa-with-SHA256'
, so it is best to always use digest
algorithm names.
crypto.decapsulate(key, ciphertext[, callback])
#
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> Private Keyciphertext
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>callback
<Function>- Returns: <Buffer> if the
callback
function is not provided.
Key decapsulation using a KEM algorithm with a private key.
Supported key types and their KEM algorithms are:
'rsa'
2 RSA Secret Value Encapsulation'ec'
3 DHKEM(P-256, HKDF-SHA256), DHKEM(P-384, HKDF-SHA256), DHKEM(P-521, HKDF-SHA256)'x25519'
3 DHKEM(X25519, HKDF-SHA256)'x448'
3 DHKEM(X448, HKDF-SHA512)'ml-kem-512'
1 ML-KEM'ml-kem-768'
1 ML-KEM'ml-kem-1024'
1 ML-KEM
If key
is not a KeyObject
, this function behaves as if key
had been
passed to crypto.createPrivateKey()
.
If the callback
function is provided this function uses libuv's threadpool.
crypto.diffieHellman(options[, callback])
#
options
<Object>privateKey
<KeyObject>publicKey
<KeyObject>
callback
<Function>- Returns: <Buffer> if the
callback
function is not provided.
Computes the Diffie-Hellman shared secret based on a privateKey
and a publicKey
.
Both keys must have the same asymmetricKeyType
and must support either the DH or
ECDH operation.
If the callback
function is provided this function uses libuv's threadpool.
crypto.encapsulate(key[, callback])
#
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> Public Keycallback
<Function>- Returns: <Object> if the
callback
function is not provided.
Key encapsulation using a KEM algorithm with a public key.
Supported key types and their KEM algorithms are:
'rsa'
2 RSA Secret Value Encapsulation'ec'
3 DHKEM(P-256, HKDF-SHA256), DHKEM(P-384, HKDF-SHA256), DHKEM(P-521, HKDF-SHA256)'x25519'
3 DHKEM(X25519, HKDF-SHA256)'x448'
3 DHKEM(X448, HKDF-SHA512)'ml-kem-512'
1 ML-KEM'ml-kem-768'
1 ML-KEM'ml-kem-1024'
1 ML-KEM
If key
is not a KeyObject
, this function behaves as if key
had been
passed to crypto.createPublicKey()
.
If the callback
function is provided this function uses libuv's threadpool.
crypto.fips
#
Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js.
This property is deprecated. Please use crypto.setFips()
and
crypto.getFips()
instead.
crypto.generateKey(type, options, callback)
#
type
<string> The intended use of the generated secret key. Currently accepted values are'hmac'
and'aes'
.options
<Object>length
<number> The bit length of the key to generate. This must be a value greater than 0.- If
type
is'hmac'
, the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated toMath.floor(length / 8)
. - If
type
is'aes'
, the length must be one of128
,192
, or256
.
- If
callback
<Function>err
<Error>key
<KeyObject>
Asynchronously generates a new random secret key of the given length
. The
type
will determine which validations will be performed on the length
.
const {
generateKey,
} = await import('node:crypto');
generateKey('hmac', { length: 512 }, (err, key) => {
if (err) throw err;
console.log(key.export().toString('hex')); // 46e..........620
});
const {
generateKey,
} = require('node:crypto');
generateKey('hmac', { length: 512 }, (err, key) => {
if (err) throw err;
console.log(key.export().toString('hex')); // 46e..........620
});
The size of a generated HMAC key should not exceed the block size of the
underlying hash function. See crypto.createHmac()
for more information.
crypto.generateKeyPair(type, options, callback)
#
type
<string> The asymmetric key type to generate. See the supported asymmetric key types.options
<Object>modulusLength
<number> Key size in bits (RSA, DSA).publicExponent
<number> Public exponent (RSA). Default:0x10001
.hashAlgorithm
<string> Name of the message digest (RSA-PSS).mgf1HashAlgorithm
<string> Name of the message digest used by MGF1 (RSA-PSS).saltLength
<number> Minimal salt length in bytes (RSA-PSS).divisorLength
<number> Size ofq
in bits (DSA).namedCurve
<string> Name of the curve to use (EC).prime
<Buffer> The prime parameter (DH).primeLength
<number> Prime length in bits (DH).generator
<number> Custom generator (DH). Default:2
.groupName
<string> Diffie-Hellman group name (DH). Seecrypto.getDiffieHellman()
.paramEncoding
<string> Must be'named'
or'explicit'
(EC). Default:'named'
.publicKeyEncoding
<Object> SeekeyObject.export()
.privateKeyEncoding
<Object> SeekeyObject.export()
.
callback
<Function>err
<Error>publicKey
<string> | <Buffer> | <KeyObject>privateKey
<string> | <Buffer> | <KeyObject>
Generates a new asymmetric key pair of the given type
. RSA, RSA-PSS, DSA, EC,
Ed25519, Ed448, X25519, X448, and DH are currently supported.
If a publicKeyEncoding
or privateKeyEncoding
was specified, this function
behaves as if keyObject.export()
had been called on its result. Otherwise,
the respective part of the key is returned as a KeyObject
.
It is recommended to encode public keys as 'spki'
and private keys as
'pkcs8'
with encryption for long-term storage:
const {
generateKeyPair,
} = await import('node:crypto');
generateKeyPair('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem',
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret',
},
}, (err, publicKey, privateKey) => {
// Handle errors and use the generated key pair.
});
const {
generateKeyPair,
} = require('node:crypto');
generateKeyPair('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem',
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret',
},
}, (err, publicKey, privateKey) => {
// Handle errors and use the generated key pair.
});
On completion, callback
will be called with err
set to undefined
and
publicKey
/ privateKey
representing the generated key pair.
If this method is invoked as its util.promisify()
ed version, it returns
a Promise
for an Object
with publicKey
and privateKey
properties.
crypto.generateKeyPairSync(type, options)
#
type
<string> The asymmetric key type to generate. See the supported asymmetric key types.options
<Object>modulusLength
<number> Key size in bits (RSA, DSA).publicExponent
<number> Public exponent (RSA). Default:0x10001
.hashAlgorithm
<string> Name of the message digest (RSA-PSS).mgf1HashAlgorithm
<string> Name of the message digest used by MGF1 (RSA-PSS).saltLength
<number> Minimal salt length in bytes (RSA-PSS).divisorLength
<number> Size ofq
in bits (DSA).namedCurve
<string> Name of the curve to use (EC).prime
<Buffer> The prime parameter (DH).primeLength
<number> Prime length in bits (DH).generator
<number> Custom generator (DH). Default:2
.groupName
<string> Diffie-Hellman group name (DH). Seecrypto.getDiffieHellman()
.paramEncoding
<string> Must be'named'
or'explicit'
(EC). Default:'named'
.publicKeyEncoding
<Object> SeekeyObject.export()
.privateKeyEncoding
<Object> SeekeyObject.export()
.
- Returns: <Object>
publicKey
<string> | <Buffer> | <KeyObject>privateKey
<string> | <Buffer> | <KeyObject>
Generates a new asymmetric key pair of the given type
. RSA, RSA-PSS, DSA, EC,
Ed25519, Ed448, X25519, X448, DH, and ML-DSA1 are currently supported.
If a publicKeyEncoding
or privateKeyEncoding
was specified, this function
behaves as if keyObject.export()
had been called on its result. Otherwise,
the respective part of the key is returned as a KeyObject
.
When encoding public keys, it is recommended to use 'spki'
. When encoding
private keys, it is recommended to use 'pkcs8'
with a strong passphrase,
and to keep the passphrase confidential.
const {
generateKeyPairSync,
} = await import('node:crypto');
const {
publicKey,
privateKey,
} = generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem',
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret',
},
});
const {
generateKeyPairSync,
} = require('node:crypto');
const {
publicKey,
privateKey,
} = generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem',
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret',
},
});
The return value { publicKey, privateKey }
represents the generated key pair.
When PEM encoding was selected, the respective key will be a string, otherwise
it will be a buffer containing the data encoded as DER.
crypto.generateKeySync(type, options)
#
type
<string> The intended use of the generated secret key. Currently accepted values are'hmac'
and'aes'
.options
<Object>length
<number> The bit length of the key to generate.- If
type
is'hmac'
, the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated toMath.floor(length / 8)
. - If
type
is'aes'
, the length must be one of128
,192
, or256
.
- If
- Returns: <KeyObject>
Synchronously generates a new random secret key of the given length
. The
type
will determine which validations will be performed on the length
.
const {
generateKeySync,
} = await import('node:crypto');
const key = generateKeySync('hmac', { length: 512 });
console.log(key.export().toString('hex')); // e89..........41e
const {
generateKeySync,
} = require('node:crypto');
const key = generateKeySync('hmac', { length: 512 });
console.log(key.export().toString('hex')); // e89..........41e
The size of a generated HMAC key should not exceed the block size of the
underlying hash function. See crypto.createHmac()
for more information.
crypto.generatePrime(size[, options], callback)
#
size
<number> The size (in bits) of the prime to generate.options
<Object>add
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>rem
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>safe
<boolean> Default:false
.bigint
<boolean> Whentrue
, the generated prime is returned as abigint
.
callback
<Function>err
<Error>prime
<ArrayBuffer> | <bigint>
Generates a pseudorandom prime of size
bits.
If options.safe
is true
, the prime will be a safe prime -- that is,
(prime - 1) / 2
will also be a prime.
The options.add
and options.rem
parameters can be used to enforce additional
requirements, e.g., for Diffie-Hellman:
- If
options.add
andoptions.rem
are both set, the prime will satisfy the condition thatprime % add = rem
. - If only
options.add
is set andoptions.safe
is nottrue
, the prime will satisfy the condition thatprime % add = 1
. - If only
options.add
is set andoptions.safe
is set totrue
, the prime will instead satisfy the condition thatprime % add = 3
. This is necessary becauseprime % add = 1
foroptions.add > 2
would contradict the condition enforced byoptions.safe
. options.rem
is ignored ifoptions.add
is not given.
Both options.add
and options.rem
must be encoded as big-endian sequences
if given as an ArrayBuffer
, SharedArrayBuffer
, TypedArray
, Buffer
, or
DataView
.
By default, the prime is encoded as a big-endian sequence of octets
in an <ArrayBuffer>. If the bigint
option is true
, then a <bigint>
is provided.
The size
of the prime will have a direct impact on how long it takes to
generate the prime. The larger the size, the longer it will take. Because
we use OpenSSL's BN_generate_prime_ex
function, which provides only
minimal control over our ability to interrupt the generation process,
it is not recommended to generate overly large primes, as doing so may make
the process unresponsive.
crypto.generatePrimeSync(size[, options])
#
size
<number> The size (in bits) of the prime to generate.options
<Object>add
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>rem
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>safe
<boolean> Default:false
.bigint
<boolean> Whentrue
, the generated prime is returned as abigint
.
- Returns: <ArrayBuffer> | <bigint>
Generates a pseudorandom prime of size
bits.
If options.safe
is true
, the prime will be a safe prime -- that is,
(prime - 1) / 2
will also be a prime.
The options.add
and options.rem
parameters can be used to enforce additional
requirements, e.g., for Diffie-Hellman:
- If
options.add
andoptions.rem
are both set, the prime will satisfy the condition thatprime % add = rem
. - If only
options.add
is set andoptions.safe
is nottrue
, the prime will satisfy the condition thatprime % add = 1
. - If only
options.add
is set andoptions.safe
is set totrue
, the prime will instead satisfy the condition thatprime % add = 3
. This is necessary becauseprime % add = 1
foroptions.add > 2
would contradict the condition enforced byoptions.safe
. options.rem
is ignored ifoptions.add
is not given.
Both options.add
and options.rem
must be encoded as big-endian sequences
if given as an ArrayBuffer
, SharedArrayBuffer
, TypedArray
, Buffer
, or
DataView
.
By default, the prime is encoded as a big-endian sequence of octets
in an <ArrayBuffer>. If the bigint
option is true
, then a <bigint>
is provided.
The size
of the prime will have a direct impact on how long it takes to
generate the prime. The larger the size, the longer it will take. Because
we use OpenSSL's BN_generate_prime_ex
function, which provides only
minimal control over our ability to interrupt the generation process,
it is not recommended to generate overly large primes, as doing so may make
the process unresponsive.
crypto.getCipherInfo(nameOrNid[, options])
#
nameOrNid
<string> | <number> The name or nid of the cipher to query.options
<Object>- Returns: <Object>
name
<string> The name of the ciphernid
<number> The nid of the cipherblockSize
<number> The block size of the cipher in bytes. This property is omitted whenmode
is'stream'
.ivLength
<number> The expected or default initialization vector length in bytes. This property is omitted if the cipher does not use an initialization vector.keyLength
<number> The expected or default key length in bytes.mode
<string> The cipher mode. One of'cbc'
,'ccm'
,'cfb'
,'ctr'
,'ecb'
,'gcm'
,'ocb'
,'ofb'
,'stream'
,'wrap'
,'xts'
.
Returns information about a given cipher.
Some ciphers accept variable length keys and initialization vectors. By default,
the crypto.getCipherInfo()
method will return the default values for these
ciphers. To test if a given key length or iv length is acceptable for given
cipher, use the keyLength
and ivLength
options. If the given values are
unacceptable, undefined
will be returned.
crypto.getCiphers()
#
- Returns: <string[]> An array with the names of the supported cipher algorithms.
const {
getCiphers,
} = await import('node:crypto');
console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
const {
getCiphers,
} = require('node:crypto');
console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
crypto.getCurves()
#
- Returns: <string[]> An array with the names of the supported elliptic curves.
const {
getCurves,
} = await import('node:crypto');
console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
const {
getCurves,
} = require('node:crypto');
console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
crypto.getDiffieHellman(groupName)
#
groupName
<string>- Returns: <DiffieHellmanGroup>
Creates a predefined DiffieHellmanGroup
key exchange object. The
supported groups are listed in the documentation for DiffieHellmanGroup
.
The returned object mimics the interface of objects created by
crypto.createDiffieHellman()
, but will not allow changing
the keys (with diffieHellman.setPublicKey()
, for example). The
advantage of using this method is that the parties do not have to
generate nor exchange a group modulus beforehand, saving both processor
and communication time.
Example (obtaining a shared secret):
const {
getDiffieHellman,
} = await import('node:crypto');
const alice = getDiffieHellman('modp14');
const bob = getDiffieHellman('modp14');
alice.generateKeys();
bob.generateKeys();
const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
/* aliceSecret and bobSecret should be the same */
console.log(aliceSecret === bobSecret);
const {
getDiffieHellman,
} = require('node:crypto');
const alice = getDiffieHellman('modp14');
const bob = getDiffieHellman('modp14');
alice.generateKeys();
bob.generateKeys();
const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
/* aliceSecret and bobSecret should be the same */
console.log(aliceSecret === bobSecret);
crypto.getFips()
#
crypto.getHashes()
#
- Returns: <string[]> An array of the names of the supported hash algorithms,
such as
'RSA-SHA256'
. Hash algorithms are also called "digest" algorithms.
const {
getHashes,
} = await import('node:crypto');
console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
const {
getHashes,
} = require('node:crypto');
console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
crypto.getRandomValues(typedArray)
#
typedArray
<Buffer> | <TypedArray> | <DataView> | <ArrayBuffer>- Returns: <Buffer> | <TypedArray> | <DataView> | <ArrayBuffer> Returns
typedArray
.
A convenient alias for crypto.webcrypto.getRandomValues()
. This
implementation is not compliant with the Web Crypto spec, to write
web-compatible code use crypto.webcrypto.getRandomValues()
instead.
crypto.hash(algorithm, data[, options])
#
algorithm
<string> | <undefined>data
<string> | <Buffer> | <TypedArray> | <DataView> Whendata
is a string, it will be encoded as UTF-8 before being hashed. If a different input encoding is desired for a string input, user could encode the string into aTypedArray
using eitherTextEncoder
orBuffer.from()
and passing the encodedTypedArray
into this API instead.options
<Object> | <string>- Returns: <string> | <Buffer>
A utility for creating one-shot hash digests of data. It can be faster than
the object-based crypto.createHash()
when hashing a smaller amount of data
(<= 5MB) that's readily available. If the data can be big or if it is streamed,
it's still recommended to use crypto.createHash()
instead.
The algorithm
is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are 'sha256'
, 'sha512'
, etc.
On recent releases of OpenSSL, openssl list -digest-algorithms
will
display the available digest algorithms.
If options
is a string, then it specifies the outputEncoding
.
Example:
const crypto = require('node:crypto');
const { Buffer } = require('node:buffer');
// Hashing a string and return the result as a hex-encoded string.
const string = 'Node.js';
// 10b3493287f831e81a438811a1ffba01f8cec4b7
console.log(crypto.hash('sha1', string));
// Encode a base64-encoded string into a Buffer, hash it and return
// the result as a buffer.
const base64 = 'Tm9kZS5qcw==';
// <Buffer 10 b3 49 32 87 f8 31 e8 1a 43 88 11 a1 ff ba 01 f8 ce c4 b7>
console.log(crypto.hash('sha1', Buffer.from(base64, 'base64'), 'buffer'));
import crypto from 'node:crypto';
import { Buffer } from 'node:buffer';
// Hashing a string and return the result as a hex-encoded string.
const string = 'Node.js';
// 10b3493287f831e81a438811a1ffba01f8cec4b7
console.log(crypto.hash('sha1', string));
// Encode a base64-encoded string into a Buffer, hash it and return
// the result as a buffer.
const base64 = 'Tm9kZS5qcw==';
// <Buffer 10 b3 49 32 87 f8 31 e8 1a 43 88 11 a1 ff ba 01 f8 ce c4 b7>
console.log(crypto.hash('sha1', Buffer.from(base64, 'base64'), 'buffer'));
crypto.hkdf(digest, ikm, salt, info, keylen, callback)
#
digest
<string> The digest algorithm to use.ikm
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> The input keying material. Must be provided but can be zero-length.salt
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> The salt value. Must be provided but can be zero-length.info
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.keylen
<number> The length of the key to generate. Must be greater than 0. The maximum allowable value is255
times the number of bytes produced by the selected digest function (e.g.sha512
generates 64-byte hashes, making the maximum HKDF output 16320 bytes).callback
<Function>err
<Error>derivedKey
<ArrayBuffer>
HKDF is a simple key derivation function defined in RFC 5869. The given ikm
,
salt
and info
are used with the digest
to derive a key of keylen
bytes.
The supplied callback
function is called with two arguments: err
and
derivedKey
. If an errors occurs while deriving the key, err
will be set;
otherwise err
will be null
. The successfully generated derivedKey
will
be passed to the callback as an <ArrayBuffer>. An error will be thrown if any
of the input arguments specify invalid values or types.
import { Buffer } from 'node:buffer';
const {
hkdf,
} = await import('node:crypto');
hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
if (err) throw err;
console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
});
const {
hkdf,
} = require('node:crypto');
const { Buffer } = require('node:buffer');
hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
if (err) throw err;
console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
});
crypto.hkdfSync(digest, ikm, salt, info, keylen)
#
digest
<string> The digest algorithm to use.ikm
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> The input keying material. Must be provided but can be zero-length.salt
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> The salt value. Must be provided but can be zero-length.info
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.keylen
<number> The length of the key to generate. Must be greater than 0. The maximum allowable value is255
times the number of bytes produced by the selected digest function (e.g.sha512
generates 64-byte hashes, making the maximum HKDF output 16320 bytes).- Returns: <ArrayBuffer>
Provides a synchronous HKDF key derivation function as defined in RFC 5869. The
given ikm
, salt
and info
are used with the digest
to derive a key of
keylen
bytes.
The successfully generated derivedKey
will be returned as an <ArrayBuffer>.
An error will be thrown if any of the input arguments specify invalid values or types, or if the derived key cannot be generated.
import { Buffer } from 'node:buffer';
const {
hkdfSync,
} = await import('node:crypto');
const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
const {
hkdfSync,
} = require('node:crypto');
const { Buffer } = require('node:buffer');
const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)
#
password
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>salt
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>iterations
<number>keylen
<number>digest
<string>callback
<Function>
Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by digest
is
applied to derive a key of the requested byte length (keylen
) from the
password
, salt
and iterations
.
The supplied callback
function is called with two arguments: err
and
derivedKey
. If an error occurs while deriving the key, err
will be set;
otherwise err
will be null
. By default, the successfully generated
derivedKey
will be passed to the callback as a Buffer
. An error will be
thrown if any of the input arguments specify invalid values or types.
The iterations
argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.
The salt
should be as unique as possible. It is recommended that a salt is
random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for password
or salt
, please consider
caveats when using strings as inputs to cryptographic APIs.
const {
pbkdf2,
} = await import('node:crypto');
pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey.toString('hex')); // '3745e48...08d59ae'
});
const {
pbkdf2,
} = require('node:crypto');
pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
if (err) throw err;
console.log(derivedKey.toString('hex')); // '3745e48...08d59ae'
});
An array of supported digest functions can be retrieved using
crypto.getHashes()
.
This API uses libuv's threadpool, which can have surprising and
negative performance implications for some applications; see the
UV_THREADPOOL_SIZE
documentation for more information.
crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)
#
password
<string> | <Buffer> | <TypedArray> | <DataView>salt
<string> | <Buffer> | <TypedArray> | <DataView>iterations
<number>keylen
<number>digest
<string>- Returns: <Buffer>
Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by digest
is
applied to derive a key of the requested byte length (keylen
) from the
password
, salt
and iterations
.
If an error occurs an Error
will be thrown, otherwise the derived key will be
returned as a Buffer
.
The iterations
argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.
The salt
should be as unique as possible. It is recommended that a salt is
random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for password
or salt
, please consider
caveats when using strings as inputs to cryptographic APIs.
const {
pbkdf2Sync,
} = await import('node:crypto');
const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
console.log(key.toString('hex')); // '3745e48...08d59ae'
const {
pbkdf2Sync,
} = require('node:crypto');
const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
console.log(key.toString('hex')); // '3745e48...08d59ae'
An array of supported digest functions can be retrieved using
crypto.getHashes()
.
crypto.privateDecrypt(privateKey, buffer)
#
privateKey
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>oaepHash
<string> The hash function to use for OAEP padding and MGF1. Default:'sha1'
oaepLabel
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> The label to use for OAEP padding. If not specified, no label is used.padding
<crypto.constants> An optional padding value defined incrypto.constants
, which may be:crypto.constants.RSA_NO_PADDING
,crypto.constants.RSA_PKCS1_PADDING
, orcrypto.constants.RSA_PKCS1_OAEP_PADDING
.
buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> A new
Buffer
with the decrypted content.
Decrypts buffer
with privateKey
. buffer
was previously encrypted using
the corresponding public key, for example using crypto.publicEncrypt()
.
If privateKey
is not a KeyObject
, this function behaves as if
privateKey
had been passed to crypto.createPrivateKey()
. If it is an
object, the padding
property can be passed. Otherwise, this function uses
RSA_PKCS1_OAEP_PADDING
.
Using crypto.constants.RSA_PKCS1_PADDING
in crypto.privateDecrypt()
requires OpenSSL to support implicit rejection (rsa_pkcs1_implicit_rejection
).
If the version of OpenSSL used by Node.js does not support this feature,
attempting to use RSA_PKCS1_PADDING
will fail.
crypto.privateEncrypt(privateKey, buffer)
#
privateKey
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> A PEM encoded private key.passphrase
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> An optional passphrase for the private key.padding
<crypto.constants> An optional padding value defined incrypto.constants
, which may be:crypto.constants.RSA_NO_PADDING
orcrypto.constants.RSA_PKCS1_PADDING
.encoding
<string> The string encoding to use whenbuffer
,key
, orpassphrase
are strings.
buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>- Returns: <Buffer> A new
Buffer
with the encrypted content.
Encrypts buffer
with privateKey
. The returned data can be decrypted using
the corresponding public key, for example using crypto.publicDecrypt()
.
If privateKey
is not a KeyObject
, this function behaves as if
privateKey
had been passed to crypto.createPrivateKey()
. If it is an
object, the padding
property can be passed. Otherwise, this function uses
RSA_PKCS1_PADDING
.
crypto.publicDecrypt(key, buffer)
#
key