Context¶
What are Context¶
In the Agent Development Kit (ADK), "context" refers to the crucial bundle of information available to your agent and its tools during specific operations. Think of it as the necessary background knowledge and resources needed to handle a current task or conversation turn effectively.
Agents often need more than just the latest user message to perform well. Context is essential because it enables:
- Maintaining State: Remembering details across multiple steps in a conversation (e.g., user preferences, previous calculations, items in a shopping cart). This is primarily managed through session state.
- Passing Data: Sharing information discovered or generated in one step (like an LLM call or a tool execution) with subsequent steps. Session state is key here too.
- Accessing Services: Interacting with framework capabilities like:
- Artifact Storage: Saving or loading files or data blobs (like PDFs, images, configuration files) associated with the session.
- Memory: Searching for relevant information from past interactions or external knowledge sources connected to the user.
- Authentication: Requesting and retrieving credentials needed by tools to access external APIs securely.
- Identity and Tracking: Knowing which agent is currently running (
agent.name
) and uniquely identifying the current request-response cycle (invocation_id
) for logging and debugging. - Tool-Specific Actions: Enabling specialized operations within tools, such as requesting authentication or searching memory, which require access to the current interaction's details.
The central piece holding all this information together for a single, complete user-request-to-final-response cycle (an invocation) is the InvocationContext
. However, you typically won't create or manage this object directly. The ADK framework creates it when an invocation starts (e.g., via runner.run_async
) and passes the relevant contextual information implicitly to your agent code, callbacks, and tools.
# Conceptual Pseudocode: How the framework provides context (Internal Logic)
# runner = Runner(agent=my_root_agent, session_service=..., artifact_service=...)
# user_message = types.Content(...)
# session = session_service.get_session(...) # Or create new
# --- Inside runner.run_async(...) ---
# 1. Framework creates the main context for this specific run
# invocation_context = InvocationContext(
# invocation_id="unique-id-for-this-run",
# session=session,
# user_content=user_message,
# agent=my_root_agent, # The starting agent
# session_service=session_service,
# artifact_service=artifact_service,
# memory_service=memory_service,
# # ... other necessary fields ...
# )
#
# 2. Framework calls the agent's run method, passing the context implicitly
# (The agent's method signature will receive it, e.g., runAsyncImpl(InvocationContext invocationContext))
# await my_root_agent.run_async(invocation_context)
# --- End Internal Logic ---
#
# As a developer, you work with the context objects provided in method arguments.
/* Conceptual Pseudocode: How the framework provides context (Internal Logic) */
InMemoryRunner runner = new InMemoryRunner(agent);
Session session = runner
.sessionService()
.createSession(runner.appName(), USER_ID, initialState, SESSION_ID )
.blockingGet();
try (Scanner scanner = new Scanner(System.in, StandardCharsets.UTF_8)) {
while (true) {
System.out.print("\nYou > ");
}
String userInput = scanner.nextLine();
if ("quit".equalsIgnoreCase(userInput)) {
break;
}
Content userMsg = Content.fromParts(Part.fromText(userInput));
Flowable<Event> events = runner.runAsync(session.userId(), session.id(), userMsg);
System.out.print("\nAgent > ");
events.blockingForEach(event -> System.out.print(event.stringifyContent()));
}
The Different types of Context¶
While InvocationContext
acts as the comprehensive internal container, ADK provides specialized context objects tailored to specific situations. This ensures you have the right tools and permissions for the task at hand without needing to handle the full complexity of the internal context everywhere. Here are the different "flavors" you'll encounter:
-
InvocationContext
- Where Used: Received as the
ctx
argument directly within an agent's core implementation methods (_run_async_impl
,_run_live_impl
). - Purpose: Provides access to the entire state of the current invocation. This is the most comprehensive context object.
- Key Contents: Direct access to
session
(includingstate
andevents
), the currentagent
instance,invocation_id
, initialuser_content
, references to configured services (artifact_service
,memory_service
,session_service
), and fields related to live/streaming modes. - Use Case: Primarily used when the agent's core logic needs direct access to the overall session or services, though often state and artifact interactions are delegated to callbacks/tools which use their own contexts. Also used to control the invocation itself (e.g., setting
ctx.end_invocation = True
).
# Pseudocode: Agent implementation receiving InvocationContext from google.adk.agents import BaseAgent from google.adk.agents.invocation_context import InvocationContext from google.adk.events import Event from typing import AsyncGenerator class MyAgent(BaseAgent): async def _run_async_impl(self, ctx: InvocationContext) -> AsyncGenerator[Event, None]: # Direct access example agent_name = ctx.agent.name session_id = ctx.session.id print(f"Agent {agent_name} running in session {session_id} for invocation {ctx.invocation_id}") # ... agent logic using ctx ... yield # ... event ...
// Pseudocode: Agent implementation receiving InvocationContext import com.google.adk.agents.BaseAgent; import com.google.adk.agents.InvocationContext; LlmAgent root_agent = LlmAgent.builder() .model("gemini-***") .name("sample_agent") .description("Answers user questions.") .instruction( """ provide instruction for the agent here. """ ) .tools(sampleTool) .outputKey("YOUR_KEY") .build(); ConcurrentMap<String, Object> initialState = new ConcurrentHashMap<>(); initialState.put("YOUR_KEY", ""); InMemoryRunner runner = new InMemoryRunner(agent); Session session = runner .sessionService() .createSession(runner.appName(), USER_ID, initialState, SESSION_ID ) .blockingGet(); try (Scanner scanner = new Scanner(System.in, StandardCharsets.UTF_8)) { while (true) { System.out.print("\nYou > "); String userInput = scanner.nextLine(); if ("quit".equalsIgnoreCase(userInput)) { break; } Content userMsg = Content.fromParts(Part.fromText(userInput)); Flowable<Event> events = runner.runAsync(session.userId(), session.id(), userMsg); System.out.print("\nAgent > "); events.blockingForEach(event -> System.out.print(event.stringifyContent())); } protected Flowable<Event> runAsyncImpl(InvocationContext invocationContext) { // Direct access example String agentName = invocationContext.agent.name String sessionId = invocationContext.session.id String invocationId = invocationContext.invocationId System.out.println("Agent " + agent_name + " running in session " + session_id + " for invocation " + invocationId) // ... agent logic using ctx ... }
- Where Used: Received as the
-
ReadonlyContext
- Where Used: Provided in scenarios where only read access to basic information is needed and mutation is disallowed (e.g.,
InstructionProvider
functions). It's also the base class for other contexts. - Purpose: Offers a safe, read-only view of fundamental contextual details.
- Key Contents:
invocation_id
,agent_name
, and a read-only view of the currentstate
.
# Pseudocode: Instruction provider receiving ReadonlyContext from google.adk.agents.readonly_context import ReadonlyContext def my_instruction_provider(context: ReadonlyContext) -> str: # Read-only access example user_tier = context.state().get("user_tier", "standard") # Can read state # context.state['new_key'] = 'value' # This would typically cause an error or be ineffective return f"Process the request for a {user_tier} user."
// Pseudocode: Instruction provider receiving ReadonlyContext import com.google.adk.agents.ReadonlyContext; public String myInstructionProvider(ReadonlyContext context){ // Read-only access example String userTier = context.state().get("user_tier", "standard"); context.state().put('new_key', 'value'); //This would typically cause an error return "Process the request for a " + userTier + " user." }
- Where Used: Provided in scenarios where only read access to basic information is needed and mutation is disallowed (e.g.,
-
CallbackContext
- Where Used: Passed as
callback_context
to agent lifecycle callbacks (before_agent_callback
,after_agent_callback
) and model interaction callbacks (before_model_callback
,after_model_callback
). - Purpose: Facilitates inspecting and modifying state, interacting with artifacts, and accessing invocation details specifically within callbacks.
- Key Capabilities (Adds to
ReadonlyContext
):- Mutable
state
Property: Allows reading and writing to session state. Changes made here (callback_context.state['key'] = value
) are tracked and associated with the event generated by the framework after the callback. - Artifact Methods:
load_artifact(filename)
andsave_artifact(filename, part)
methods for interacting with the configuredartifact_service
. - Direct
user_content
access.
- Mutable
# Pseudocode: Callback receiving CallbackContext from google.adk.agents.callback_context import CallbackContext from google.adk.models import LlmRequest from google.genai import types from typing import Optional def my_before_model_cb(callback_context: CallbackContext, request: LlmRequest) -> Optional[types.Content]: # Read/Write state example call_count = callback_context.state.get("model_calls", 0) callback_context.state["model_calls"] = call_count + 1 # Modify state # Optionally load an artifact # config_part = callback_context.load_artifact("model_config.json") print(f"Preparing model call #{call_count + 1} for invocation {callback_context.invocation_id}") return None # Allow model call to proceed
// Pseudocode: Callback receiving CallbackContext import com.google.adk.agents.CallbackContext; import com.google.adk.models.LlmRequest; import com.google.genai.types.Content; import java.util.Optional; public Maybe<LlmResponse> myBeforeModelCb(CallbackContext callbackContext, LlmRequest request){ // Read/Write state example callCount = callbackContext.state().get("model_calls", 0) callbackContext.state().put("model_calls") = callCount + 1 # Modify state // Optionally load an artifact // Maybe<Part> configPart = callbackContext.loadArtifact("model_config.json"); System.out.println("Preparing model call " + callCount + 1); return Maybe.empty(); // Allow model call to proceed }
- Where Used: Passed as
-
ToolContext
- Where Used: Passed as
tool_context
to the functions backingFunctionTool
s and to tool execution callbacks (before_tool_callback
,after_tool_callback
). - Purpose: Provides everything
CallbackContext
does, plus specialized methods essential for tool execution, like handling authentication, searching memory, and listing artifacts. - Key Capabilities (Adds to
CallbackContext
):- Authentication Methods:
request_credential(auth_config)
to trigger an auth flow, andget_auth_response(auth_config)
to retrieve credentials provided by the user/system. - Artifact Listing:
list_artifacts()
to discover available artifacts in the session. - Memory Search:
search_memory(query)
to query the configuredmemory_service
. function_call_id
Property: Identifies the specific function call from the LLM that triggered this tool execution, crucial for linking authentication requests or responses back correctly.actions
Property: Direct access to theEventActions
object for this step, allowing the tool to signal state changes, auth requests, etc.
- Authentication Methods:
# Pseudocode: Tool function receiving ToolContext from google.adk.tools import ToolContext from typing import Dict, Any # Assume this function is wrapped by a FunctionTool def search_external_api(query: str, tool_context: ToolContext) -> Dict[str, Any]: api_key = tool_context.state.get("api_key") if not api_key: # Define required auth config # auth_config = AuthConfig(...) # tool_context.request_credential(auth_config) # Request credentials # Use the 'actions' property to signal the auth request has been made # tool_context.actions.requested_auth_configs[tool_context.function_call_id] = auth_config return {"status": "Auth Required"} # Use the API key... print(f"Tool executing for query '{query}' using API key. Invocation: {tool_context.invocation_id}") # Optionally search memory or list artifacts # relevant_docs = tool_context.search_memory(f"info related to {query}") # available_files = tool_context.list_artifacts() return {"result": f"Data for {query} fetched."}
// Pseudocode: Tool function receiving ToolContext import com.google.adk.tools.ToolContext; import java.util.HashMap; import java.util.Map; // Assume this function is wrapped by a FunctionTool public Map<String, Object> searchExternalApi(String query, ToolContext toolContext){ String apiKey = toolContext.state.get("api_key"); if(apiKey.isEmpty()){ // Define required auth config // authConfig = AuthConfig(...); // toolContext.requestCredential(authConfig); # Request credentials // Use the 'actions' property to signal the auth request has been made ... return Map.of("status", "Auth Required"); // Use the API key... System.out.println("Tool executing for query " + query + " using API key. "); // Optionally list artifacts // Single<List<String>> availableFiles = toolContext.listArtifacts(); return Map.of("result", "Data for " + query + " fetched"); }
- Where Used: Passed as
Understanding these different context objects and when to use them is key to effectively managing state, accessing services, and controlling the flow of your ADK application. The next section will detail common tasks you can perform using these contexts.
Common Tasks Using Context¶
Now that you understand the different context objects, let's focus on how to use them for common tasks when building your agents and tools.
Accessing Information¶
You'll frequently need to read information stored within the context.
-
Reading Session State: Access data saved in previous steps or user/app-level settings. Use dictionary-like access on the
state
property.# Pseudocode: In a Tool function from google.adk.tools import ToolContext def my_tool(tool_context: ToolContext, **kwargs): user_pref = tool_context.state.get("user_display_preference", "default_mode") api_endpoint = tool_context.state.get("app:api_endpoint") # Read app-level state if user_pref == "dark_mode": # ... apply dark mode logic ... pass print(f"Using API endpoint: {api_endpoint}") # ... rest of tool logic ... # Pseudocode: In a Callback function from google.adk.agents.callback_context import CallbackContext def my_callback(callback_context: CallbackContext, **kwargs): last_tool_result = callback_context.state.get("temp:last_api_result") # Read temporary state if last_tool_result: print(f"Found temporary result from last tool: {last_tool_result}") # ... callback logic ...
// Pseudocode: In a Tool function import com.google.adk.tools.ToolContext; public void myTool(ToolContext toolContext){ String userPref = toolContext.state().get("user_display_preference"); String apiEndpoint = toolContext.state().get("app:api_endpoint"); // Read app-level state if(userPref.equals("dark_mode")){ // ... apply dark mode logic ... pass } System.out.println("Using API endpoint: " + api_endpoint); // ... rest of tool logic ...