Skip to content

ynaka81/DeepPose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepPose

This is not official implementation. Original paper is DeepPose: Human Pose Estimation via Deep Neural Networks. And the implementation model performs 3D pose esimation.

Requirements

  • Python 2.7.6
  • Chainer 1.19.0
  • NumPy 1.11.3
  • six 1.10.0
  • Pillow 3.4.1
  • SciPy 0.17.1
  • OpenCV 2.4.8
  • pyquaternion 0.9.0
  • paramiko 1.16.0
  • scp 0.10.2
  • matplotlib 1.5.1
  • PyQt (QtCore, QtGui, QtOpenGL) 4.10.4
  • PyOpenGL 3.1.0

Usage

Dataset preparation

First, download HumanEva Dataset to 'DeepPose/orig_data'. And execute the folowing script.

python datasets/human_eva.py
python datasets/compute_mean.py

human_eva.py performs to calculate bounding boxes of human, resize images, and modify 2D/3D poses for your Neural Networks training. compute_mean.py performs to compute a mean image of the datasets.

Start training

Just run:

python train/train_pose_net.py

If you want to run train_pose_net.py with your own settings, please check the options first by python train/train_pose_net.py --help and give customize training settings.

Visualize log

Just run:

python visualize/visualize_log.py

If you run train_pose_net.py on some clouds, please specify the ip address with python visialize/visualize_log.py --locate '[email protected]'. And you can see the other settings with python visialize/visualize_log.py --help.

Prediction

Execute the following scripts, GUI tool will start.

python demo/stream_player.py

About

DeepPose 3D extension with Chainer

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages