-
Interpretable-DIRL4Act Public
Code for paper "Analyzing sequential activity and travel decisions with interpretable deep inverse reinforcement learning"
Jupyter Notebook UpdatedNov 1, 2025 -
-
Data and code for the paper: Liang, Y., Zhao, Z., Webster, C. J., 2024. Generating sparse origin-destination flows on shared mobility networks using probabilistic graph neural networks. Sustainable…
-
zhengyunhan.github.io Public
Forked from zhengyunhan/zhengyunhan.github.ioAcademic personal website
JavaScript MIT License UpdatedFeb 12, 2025 -
GenAI_density_urbanization Public
Forked from Hemy17/Stepwise_GenerativeUrbanDesignPython Apache License 2.0 UpdatedJan 20, 2025 -
STMRGNN Public
Code for Liang, Y., Huang, G., Zhao, Z. (2022). Joint demand prediction for multimodal systems: A multi-task multi-relational spatiotemporal graph neural network approach. Transportation Research P…
-
-
-
-