Chong Cheng1* · Yu Hu1* · Sicheng Yu1 · Beizhen Zhao1 · Zijian Wang1 · Hao Wang1†
International Conference on Computer Vision, ICCV 2025
1The Hong Kong University of Science and Technology (Guangzhou)
The code has been tested on systems with:
- Ubuntu 22.04 LTS
- Python 3.10.18
- CUDA 11.8
- NVIDIA GeForce RTX 3090 or A6000
Clone the repo with --recursive because we have submodules:
git clone https://github.com/3DAgentWorld/RegGS.git --recursive
cd RegGS
This codebase has been successfully tested with Python 3.10, CUDA 11.8, and PyTorch 2.5.1. We recommend installing the dependencies in a virtual environment such as Anaconda.
-
Install main libraries:
conda env create -f environment.yaml conda activate reggs pip install -r requirements.txt
-
Install thirdparty submodules:
pip install thirdparty/diff-gaussian-rasterization-w-pose pip install thirdparty/gaussian_rasterizer` pip install thirdparty/simple-knn
-
Compile the cuda kernels for RoPE (as in CroCo v2):
cd src/noposplat/model/encoder/backbone/croco/curope python setup.py build_ext --inplace -
If you encounter cannot import torch. add option
--no-build-isolationtopip install
Download NoPoSplat re10k checkpoints and acid checkpoints to ./pretrained_weights directory, run:
wget -c https://huggingface.co/botaoye/NoPoSplat/resolve/main/re10k.ckpt -P ./pretrained_weights
wget -c https://huggingface.co/botaoye/NoPoSplat/resolve/main/acid.ckpt -P ./pretrained_weightsThe preprocessed re10k data is placed in the directory ./sample_data. To run RegGS on sample data, run:
- The inference stage:
CUDA_VISIBLE_DEVICES=0 python3 run_infer.py config/re10k.yaml - The refinement stage:
CUDA_VISIBLE_DEVICES=0 python3 run_refine.py --checkpoint_path output/re10k/000c3ab189999a83 - The evaluation stage:
CUDA_VISIBLE_DEVICES=0 python3 run_metric.py --checkpoint_path output/re10k/000c3ab189999a83
- create codebase
- add evaluation script
- prepare sample data
- write installation guide
- add data preprocessing script
- implement GPU-optimized k-means
- add Gradio visualization
@inproceedings{cc2025_reggs,
title = {{RegGS}: Unposed Sparse Views Gaussian Splatting with {3DGS} Registration},
author = {Cheng, Chong and Hu, Yu and Yu, Sicheng and Zhao, Beizhen and Wang, Zijian and Wang, Hao},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year = {2025}
}