Skip to content

A Model Context Protocol (MCP) server that provides seamless integration with Google Cloud Storage, enabling AI assistants to perform file operations, manage buckets, and interact with GCS resources directly.

License

Notifications You must be signed in to change notification settings

uysalserkan/gcp-storage-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

25 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ Professional GCP Storage API

A comprehensive, enterprise-grade FastAPI server providing REST endpoints for Google Cloud Storage operations. Built with production-ready features including authentication, rate limiting, monitoring, caching, and structured logging.

Logo

✨ Features

πŸ”§ Core API Features

  • Complete GCS Operations: Full REST API for buckets, blobs, and storage management
  • Batch Operations: Efficient bulk upload/delete operations
  • Storage Analytics: Comprehensive storage usage and performance metrics
  • Search & Filter: Advanced blob search and size-based filtering
  • Signed URLs: Temporary access URL generation with configurable expiration
  • Project Management: Multi-project support and project switching

πŸ”’ Security & Authentication

  • API Key Authentication: Secure API key-based authentication system
  • Rate Limiting: Configurable rate limiting with Redis support
  • CORS Protection: Configurable cross-origin resource sharing
  • Security Headers: Comprehensive security headers (CSP, HSTS, etc.)
  • Input Validation: Extensive request validation and sanitization

⚑ Performance & Monitoring

  • Intelligent Caching: In-memory caching with TTL and automatic invalidation
  • Request Tracking: Unique request IDs for complete request tracing
  • Metrics Collection: Built-in performance and usage metrics
  • Structured Logging: JSON-based structured logging with request context
  • Health Checks: Advanced health monitoring with dependency status

πŸ›‘οΈ Production Ready

  • Configuration Management: Environment-based configuration system
  • Error Handling: Comprehensive error responses with detailed context
  • Graceful Shutdown: Proper application lifecycle management
  • Documentation: Auto-generated OpenAPI documentation with examples
  • Monitoring Endpoints: Built-in metrics and health check endpoints

πŸ“– Usage

GCP Storage MCP can be used with Claude Desktop, Cursor, and more.

πŸ“¦ Claude Desktop

claude_desktop_config.json

"mcpServers": {
    "gcp-storage-mcp": {
      "command": "uvx",
      "args": [
        "--from",
        "git+https://github.com/uysalserkan/gcp-storage-mcp",
        "gcp-storage-mcp",
        "--credential_path",
        "your-credential-path.json"
      ]
    },
    ...
}

πŸ“¦ Cursor

.cursor/mcp.json

"mcpServers": {
    "gcp-storage-mcp": {
      "command": "uvx",
      "args": [
        "--from",
        "git+https://github.com/uysalserkan/gcp-storage-mcp",
        "gcp-storage-mcp",
        "--credential_path",
        "your-credential-path.json"
      ]
    },
    ...
}

πŸ“¦ Quick Start FastAPI

Prerequisites

  • Python 3.11+
  • Google Cloud SDK installed and configured
  • Active Google Cloud Project with Cloud Storage API enabled
  • Service Account with appropriate permissions

Installation

  1. Clone and Setup
git clone https://github.com/your-username/gcp-storage-mcp.git
cd gcp-storage-mcp

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
  1. Configure GCP Authentication
# Option 1: Service Account Key
export GOOGLE_APPLICATION_CREDENTIALS="path/to/service-account.json"

# Option 2: Application Default Credentials
gcloud auth application-default login
  1. Start the Server
# Development mode
python gcp-storage-mcp/api.py

# Production mode with configuration
GCP_STORAGE_API_LOG_LEVEL=INFO python gcp-storage-mcp/api.py
  1. Access the API
  • API Documentation: http://localhost:8000/docs
  • Health Check: http://localhost:8000/health
  • Metrics: http://localhost:8000/metrics

πŸ“– API Documentation

Core Endpoints

Health & Monitoring

  • GET /health - Advanced health check with dependencies
  • GET /metrics - System performance metrics
  • GET / - API information and navigation

Project Management

  • GET /projects - List all accessible GCP projects
  • GET /projects/current - Get current project ID

Bucket Operations

  • GET /buckets - List all buckets
  • POST /buckets/{bucket_name} - Create bucket
  • DELETE /buckets/{bucket_name} - Delete bucket
  • GET /buckets/{bucket_name} - Get bucket information
  • GET /buckets/{bucket_name}/exists - Check bucket existence

Blob Operations

  • GET /buckets/{bucket_name}/blobs - List blobs with prefix filtering
  • POST /buckets/{bucket_name}/blobs/{blob_name}/upload - Upload blob
  • POST /buckets/{bucket_name}/blobs/{blob_name}/download - Download blob
  • DELETE /buckets/{bucket_name}/blobs/{blob_name} - Delete blob
  • GET /buckets/{bucket_name}/blobs/{blob_name} - Get blob information
  • GET /buckets/{bucket_name}/blobs/{blob_name}/url - Get public URL
  • POST /buckets/{bucket_name}/blobs/{blob_name}/signed-url - Generate signed URL

Advanced Operations

  • POST /buckets/{bucket_name}/blobs/{blob_name}/copy - Copy blob
  • POST /buckets/{bucket_name}/blobs/{blob_name}/move - Move blob
  • POST /buckets/{bucket_name}/batch/upload - Batch upload
  • POST /buckets/{bucket_name}/batch/delete - Batch delete

Analytics & Search

  • GET /buckets/{bucket_name}/analytics/storage - Storage analytics
  • POST /buckets/{bucket_name}/search - Search blobs by pattern
  • POST /buckets/{bucket_name}/filter - Filter blobs by size

πŸ”§ Usage Examples

Basic Operations

Authentication with API Key

curl -H "X-API-Key: your-api-key" \
     -H "Content-Type: application/json" \
     http://localhost:8000/health

List Buckets

curl -H "X-API-Key: your-api-key" \
     http://localhost:8000/buckets

Upload a File

curl -X POST \
     -H "X-API-Key: your-api-key" \
     -H "Content-Type: application/json" \
     -d '{"file_path": "/path/to/local/file.txt"}' \
     http://localhost:8000/buckets/my-bucket/blobs/path/to/file.txt/upload

Generate Signed URL

curl -X POST \
     -H "X-API-Key: your-api-key" \
     -H "Content-Type: application/json" \
     -d '{"expiration_hours": 24, "method": "GET"}' \
     http://localhost:8000/buckets/my-bucket/blobs/file.txt/signed-url

Python Client Example

import httpx
import asyncio

class GCPStorageClient:
    def __init__(self, base_url: str, api_key: str):
        self.base_url = base_url
        self.headers = {"X-API-Key": api_key}

    async def list_buckets(self):
        async with httpx.AsyncClient() as client:
            response = await client.get(
                f"{self.base_url}/buckets",
                headers=self.headers
            )
            return response.json()

    async def upload_file(self, bucket: str, blob_name: str, file_path: str):
        async with httpx.AsyncClient() as client:
            response = await client.post(
                f"{self.base_url}/buckets/{bucket}/blobs/{blob_name}/upload",
                headers=self.headers,
                json={"file_path": file_path}
            )
            return response.json()

# Usage
async def main():
    client = GCPStorageClient("http://localhost:8000", "your-api-key")

    # List buckets
    buckets = await client.list_buckets()
    print(f"Found {buckets['count']} buckets")

    # Upload file
    result = await client.upload_file(
        "my-bucket",
        "documents/file.pdf",
        "/local/path/file.pdf"
    )
    print(f"Upload completed: {result}")

if __name__ == "__main__":
    asyncio.run(main())

πŸ“Š Monitoring & Observability

Health Monitoring

The API provides comprehensive health checks:

# Basic health check
curl http://localhost:8000/health

# Response includes:
# - Overall status
# - GCP connection status
# - Dependency health
# - Performance metrics
# - Uptime information

Metrics Collection

Built-in metrics endpoint provides:

curl http://localhost:8000/metrics

# Metrics include:
# - Request counts by endpoint
# - Response times
# - Error rates
# - Active requests
# - Cache hit rates

Structured Logging

All requests are logged with structured JSON:

{
  "timestamp": "2024-01-15T10:30:00Z",
  "level": "INFO",
  "message": "Request completed",
  "request_id": "550e8400-e29b-41d4-a716-446655440000",
  "method": "GET",
  "path": "/buckets",
  "status_code": 200,
  "duration_ms": 45.2,
  "client_ip": "192.168.1.100"
}

πŸ”’ Security Best Practices

Authentication

  • Use strong, randomly generated API keys
  • Rotate API keys regularly
  • Store keys securely (environment variables, secret managers)

CORS Configuration

# Restrict origins in production
GCP_STORAGE_API_ALLOWED_ORIGINS="https://yourdomain.com,https://app.yourdomain.com"

Rate Limiting

# Configure appropriate limits
GCP_STORAGE_API_RATE_LIMIT_DEFAULT="1000/hour"
GCP_STORAGE_API_RATE_LIMIT_STORAGE="redis://secure-redis:6379"

GCP Permissions

Minimum required IAM roles:

  • roles/storage.objectViewer - Read operations
  • roles/storage.objectCreator - Upload operations
  • roles/storage.admin - Full management (production)

πŸ“ˆ Performance Features

Intelligent Caching

  • Bucket Lists: Cached for 5 minutes
  • Bucket Info: Cached for 10 minutes
  • Blob URLs: Cached for 1 hour
  • Storage Analytics: Cached for 30 minutes
  • Automatic Invalidation: Cache cleared on data modifications

Request Optimization

  • Parallel Processing: Concurrent operations where possible
  • Batch Operations: Efficient bulk operations
  • Connection Pooling: Optimized GCP client connections
  • Request Tracking: Complete request lifecycle monitoring

πŸ§ͺ Testing

# Install test dependencies
pip install pytest pytest-cov httpx

# Run tests
pytest tests/

# Run with coverage
pytest --cov=gcp-storage-mcp tests/

# Integration tests (requires GCP setup)
GCP_STORAGE_API_TEST_BUCKET="test-bucket" pytest tests/integration/

🀝 Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Follow the existing code style
  4. Add tests for new features
  5. Update documentation
  6. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ”— Resources

πŸ“ž Support


Status: βœ… Production Ready | Version: 1.0.0 | Last Updated: January 2025

About

A Model Context Protocol (MCP) server that provides seamless integration with Google Cloud Storage, enabling AI assistants to perform file operations, manage buckets, and interact with GCS resources directly.

Topics

Resources

License

Stars

Watchers

Forks

Languages