Skip to content

thorwhalen/contaix

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

contaix

Tools to make contexts for AI

To install: pip install contaix

Markdown Conversion

This module provides tools for converting various file formats to Markdown. It supports common formats such as PDF, Word, Excel, PowerPoint, HTML, and Jupyter notebooks.

Key Features

  • Convert files to Markdown from bytes with format auto-detection
  • Batch convert multiple files
  • Customize output filenames and processing
  • Extensible converter system

Basic Usage

Converting a Single File

The primary function bytes_to_markdown converts a file's bytes to Markdown text:

from contaix import bytes_to_markdown

# Convert with explicit format
pdf_bytes = get_file_bytes('document.pdf')
markdown_text = bytes_to_markdown(pdf_bytes, "pdf")

# Or let the function detect the format from filename
markdown_text = bytes_to_markdown(file_bytes, input_format=None, key="document.docx")

# Or analyze the content to detect format (when no information is available)
markdown_text = bytes_to_markdown(
    unknown_bytes, 
    input_format=None, 
    key=None, 
    try_bytes_detection=True
)

Converting Multiple Files

Use bytes_store_to_markdown_store to process multiple files at once:

from contaix import bytes_store_to_markdown_store
from dol import Files

# Convert all files in a directory
src_files = Files('/path/to/documents')
target_store = {}
bytes_store_to_markdown_store(src_files, target_store)

# Now target_store contains {"file1.docx.md": "converted markdown...", ...}

Advanced Usage

Selective Conversion

If you only want to convert specific file types:

# Filter to only include certain file types
filtered_files = {k: v for k, v in src_files.items() 
                 if k.endswith('.docx') or k.endswith('.pdf')}
bytes_store_to_markdown_store(filtered_files, target_store)

Custom Output Naming

You can control how output filenames are generated:

def custom_key_transform(key):
    # Remove the extension and add "-markdown.md"
    base_name = os.path.splitext(key)[0]
    return f"{base_name}-markdown.md"

bytes_store_to_markdown_store(
    src_files, 
    target_store, 
    old_to_new_key=custom_key_transform
)

Content Aggregation

After conversion, you might want to combine all the markdown into a single document:

def aggregate_content(store):
    """Combine all markdown content into a single document with headers."""
    result = "# Combined Markdown Document\n\n"
    
    for filename, content in store.items():
        result += f"## {filename}\n\n{content}\n\n---\n\n"
        
    return result

combined_markdown = bytes_store_to_markdown_store(
    src_files, 
    {}, 
    target_store_egress=aggregate_content
)

Custom Converters

You can extend the system with your own converters:

def custom_txt_converter(b):
    """A custom converter for text files."""
    text = b.decode('utf-8', errors='ignore')
    lines = text.split('\n')
    result = f"# Custom Converted Text File\n\n"
    
    for line in lines:
        if line.strip():
            result += f"> {line}\n"
    
    return result

custom_converters = {"txt": custom_txt_converter}

bytes_store_to_markdown_store(
    src_files,
    target_store,
    converters=custom_converters
)

Format Detection Logic

The bytes_to_markdown function employs a prioritized strategy to find the right converter:

  1. Explicit Format: If you provide input_format, it uses that directly
  2. Filename-Based: If input_format is None but key (filename) is provided, it extracts the format from the extension
  3. Content-Based: If try_bytes_detection is True, it analyzes the bytes to determine the format
  4. Fallback: If no converter is found through the above methods, it uses the fallback converter

This flexible approach means you can control how formats are detected based on your specific needs.

Performance Considerations

  • If you know the file format in advance, specifying input_format will be faster
  • To disable content-based detection (for better performance), set try_bytes_detection=False
  • When processing large batches, filtering to only include supported formats can improve efficiency

Supported Formats

The module currently supports the following formats:

  • PDF (.pdf)
  • Microsoft Word (.docx, .doc)
  • Microsoft Excel (.xlsx, .xls)
  • Microsoft PowerPoint (.pptx, .ppt)
  • HTML (.html)
  • Jupyter Notebooks (.ipynb)
  • Plain text (.txt, .md)

Additional formats can be supported by adding custom converters.

About

Tools to make contexts for AI

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published