Skip to content

smin-hwang/WaveDH

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WaveDH

Paper

Network Architecture

Installation

conda create -n WaveDH python=3.10  # create a virtual env
conda activate WaveDH               # activate the env
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -r requirements.txt     # install other needed packages

Datasets Preparation

RESIDE official website here. We use the same data structure as Dehazeformer. Please refer to their repository to prepare datasets.

Finally, you should get the following dataset structure:

── data
    ├─ RESIDE-IN
    │   ├─ train
    │   │   ├─ GT
    │   │   │   └─ ... (image filename)
    │   │   └─ hazy
    │   │       └─ ... (corresponds to the former)
    │   └─ test
    │       └─ ...
    └─ RESIDE-OUT
        ├─ train
        │   ├─ GT
        │   │   └─ ... (image filename)
        │   └─ hazy
        │       └─ ... (corresponds to the former)
        └─ test
            └─ ...

Test

Run the following script to test the trained model:

python test.py --data_dir (path to dataset)--dataset (dataset name) --exp (exp name)

For example, we test the WaveDH on the SOTS indoor set:

python test.py --data_dir ./data --dataset RESIDE-IN --exp indoor

Performance

  • The benchmark results of our models can be downloaded from WaveDH and WaveDH-tiny.
  • Performance in PSNR/SSIM on SOTS-indoor and SOTS-outdoor.
Model SOTS-indoor SOTS-outdoor
WaveDH 39.35/0.995 34.89/0.984
WaveDH-Tiny 36.93/0.992 34.52/0.983

TODO list

  • Add instructions
  • Add test code
  • Add checkpoint files
  • Add training code

Citation

If you find this work useful in your research, please consider citing:

@article{hwang2024wavedh,
  title={WaveDH: Wavelet Sub-bands Guided ConvNet for Efficient Image Dehazing},
  author={Seongmin Hwang and Daeyoung Han and Cheolkon Jung and Moongu Jeon}, 
  journal={arXiv preprint arXiv:2404.01604},
  year={2024}
}

Acknowledgement

Thanks to Yuda Song et al for releasing their official implementation of the Dehazeformer paper. Our code is heavily borrowed from the implementation.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages