Count and truncate text based on tokens
Large language models such as GPT-3.5 and GPT-4 work in terms of tokens.
This tool can count tokens, using OpenAI's tiktoken library.
It can also truncate text to a specified number of tokens.
See llm, ttok and strip-tags—CLI tools for working with ChatGPT and other LLMs for more on this project.
Install this tool using pip:
pip install ttokOr using Homebrew:
brew install simonw/llm/ttokProvide text as arguments to this tool to count tokens:
ttok Hello world2
You can also pipe text into the tool:
echo -n "Hello world" | ttok2
Here the echo -n option prevents echo from adding a newline - without that you would get a token count of 3.
To pipe in text and then append extra tokens from arguments, use the -i - option:
echo -n "Hello world" | ttok more text -i -6
By default, the tokenizer model for GPT-3.5 and GPT-4 is used.
To use the model for GPT-2 and GPT-3, add --model gpt2:
ttok boo Hello there this is -m gpt26
Compared to GPT-3.5:
ttok boo Hello there this is5
Further model options are documented here.
Use the -t 10 or --truncate 10 option to truncate text to a specified number of tokens:
ttok This is too many tokens -t 3This is too
The --encode option can be used to view the integer token IDs for the incoming text:
ttok Hello world --encode9906 1917
The --decode method reverses this process:
ttok 9906 1917 --decodeHello world
Add --tokens to either of these options to see a detailed breakdown of the tokens:
ttok Hello world --encode --tokens[b'Hello', b' world']
This is the full list of available models and their corresponding encodings. Model names and encoding names are valid for the -m/--model option.
gpt-4(cl100k_base)gpt-3.5-turbo(cl100k_base)gpt-3.5(cl100k_base)gpt-35-turbo(cl100k_base)davinci-002(cl100k_base)babbage-002(cl100k_base)text-embedding-ada-002(cl100k_base)text-embedding-3-small(cl100k_base)text-embedding-3-large(cl100k_base)text-davinci-003(p50k_base)text-davinci-002(p50k_base)text-davinci-001(r50k_base)text-curie-001(r50k_base)text-babbage-001(r50k_base)text-ada-001(r50k_base)davinci(r50k_base)curie(r50k_base)babbage(r50k_base)ada(r50k_base)code-davinci-002(p50k_base)code-davinci-001(p50k_base)code-cushman-002(p50k_base)code-cushman-001(p50k_base)davinci-codex(p50k_base)cushman-codex(p50k_base)text-davinci-edit-001(p50k_edit)code-davinci-edit-001(p50k_edit)text-similarity-davinci-001(r50k_base)text-similarity-curie-001(r50k_base)text-similarity-babbage-001(r50k_base)text-similarity-ada-001(r50k_base)text-search-davinci-doc-001(r50k_base)text-search-curie-doc-001(r50k_base)text-search-babbage-doc-001(r50k_base)text-search-ada-doc-001(r50k_base)code-search-babbage-code-001(r50k_base)code-search-ada-code-001(r50k_base)gpt2(gpt2)gpt-2(gpt2)
Usage: ttok [OPTIONS] [PROMPT]...
Count and truncate text based on tokens
To count tokens for text passed as arguments:
ttok one two three
To count tokens from stdin:
cat input.txt | ttok
To truncate to 100 tokens:
cat input.txt | ttok -t 100
To truncate to 100 tokens using the gpt2 model:
cat input.txt | ttok -t 100 -m gpt2
To view token integers:
cat input.txt | ttok --encode
To convert tokens back to text:
ttok 9906 1917 --decode
To see the details of the tokens:
ttok "hello world" --tokens
Outputs:
[b'hello', b' world']
Options:
--version Show the version and exit.
-i, --input FILENAME
-t, --truncate INTEGER Truncate to this many tokens
-m, --model TEXT Which model to use
--encode, --tokens Output token integers
--decode Convert token integers to text
--tokens Output full tokens
--allow-special Do not error on special tokens
--help Show this message and exit.
You can also run this command using:
python -m ttok --helpTo contribute to this tool, first checkout the code. Then create a new virtual environment:
cd ttok
python -m venv venv
source venv/bin/activateNow install the dependencies and test dependencies:
pip install -e '.[test]'To run the tests:
pytest