Skip to content

pr1m8/awt_quant

Repository files navigation

PyPI License Docs Tests


🌐 AWT Quant

AWT Quant is a next-generation quantitative research & financial modeling platform.
It combines the best of stochastic modeling, LLMs, portfolio analysis, and autonomous agents
to deliver a comprehensive quant toolkit for researchers, analysts, and traders.

💹 From SPDE Monte Carlo simulations to TimeGPT-style assistants, portfolio optimization, stress testing, and macroeconomic integration — AWT Quant covers it all.


📖 Table of Contents


✨ Features

✔️ Stochastic Models: GBM, Heston, CIR, OU, MJD
✔️ Forecasting Engines: GARCH, SPDE, LLM-based, macro-informed
✔️ Portfolio Optimization: Constraints, objectives, efficient frontier visualization
✔️ Risk Analytics: Stress testing, VaR, CVaR, tearsheets
✔️ Multi-Factor Analysis: PCA, clustering, attribution, localized models
✔️ Macroeconomic Data: 800k+ time series from FRED, IMF, WorldBank, OECD
✔️ Agent Workflows: Autonomous research, trading, portfolio management


⚡️ Installation

pip install awt-quant
# or with poetry
poetry add awt-quant

🚀 Quick Start

🎲 Stochastic Simulations

from awt_quant.forecast.stochastic.run_simulations import SPDEMCSimulator

sim = SPDEMCSimulator(
    symbol="AAPL",
    start_date="2022-01-01",
    end_date="2022-03-01",
    dt=1,
    num_paths=1000,
    eq="heston"
)

sim.download_data()
sim.set_parameters()
sim.simulate()
sim.plot_simulation()

📈 Portfolio Forecasting & Optimization

from awt_quant.forecast.portfolio.portfolio_forecast import PortfolioForecaster
from awt_quant.portfolio.optimization.optimize import PortfolioOptimizer

forecaster = PortfolioForecaster(["AAPL", "MSFT", "TSLA", "AMZN", "GOOG"])
forecast_results = forecaster.forecast(horizon=30)

optimizer = PortfolioOptimizer(
    assets=["AAPL", "MSFT", "TSLA", "AMZN", "GOOG"],
    objective="sharpe",
    constraints={"max_volatility": 0.15, "max_per_asset": 0.25},
    forecast_data=forecast_results
)

weights = optimizer.optimize()
optimizer.plot_efficient_frontier()
optimizer.plot_allocation()

📊 Modules

Module Description
Stochastic Models GBM, Heston, CIR, OU, MJD
Forecasting LLMs, GARCH, SPDE, macro forecasting
Portfolio Optimization & multi-factor analysis
Risk Tearsheets, stress tests, attribution
Agents Research, forecasting, portfolio workflows
Data Market & macro data acquisition

🧠 LLM Forecasting

  • Lag-Llama → Time series foundation model with macro context
  • TimeGPT Assistant → Forecasts with narratives & natural language queries
  • Macro Models → Granger causality, transfer entropy, PCMCI

🧪 Use Cases

  • 🔮 Forecasting: Ensemble statistical + stochastic + LLM methods
  • 💼 Portfolio Optimization: Forecast-informed allocation, constraints, Black-Litterman
  • 🔍 Multi-Factor Analysis: Clustering, attribution, sensitivity analysis
  • 📊 Risk Analytics: VaR, CVaR, drawdowns, stress tests
  • 🤖 Autonomous Agents: Research reports, trading strategies, monitoring

🛠 Development

git clone https://github.com/pr1m8/awt-quant.git
cd awt-quant
poetry install
pytest tests/

📖 Documentation

👉 awt-quant.readthedocs.io

Includes:

  • API reference
  • Interactive notebooks
  • Tutorials & guides
  • Case studies
  • Benchmarks

📄 License

MIT © 2025 William R. Astley / Pr1m8


🙏 Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages