AI-powered registration system built with FastAPI, React, LangGraph, DSPy, Guardrails AI, and MLflow. The system guides users through a structured conversation, collecting registration details while leveraging AI validation to ensure input accuracy.
/project-root
│── /app # FastAPI backend
│── /app/docker-compose.yml # Docker setup
│── /frontend # React frontend
│── .venv # Python virtual environment
│── README.md # This file
- Python 3.9+
- Poetry or pip (for dependency management)
- SQLite
-
Navigate to the backend directory:
cd app
-
Activate the Python virtual environment:
source ../.venv/bin/activate # macOS/Linux ../.venv/Scripts/activate # Windows (PowerShell)
-
Install dependencies:
pip install -r requirements.txt
-
Start the FastAPI server:
uvicorn main:app --host 0.0.0.0 --port 8000 --reload
-
Access the API docs in the browser:
- Open http://localhost:8000/docs (Swagger UI)
- Open http://localhost:8000/redoc (ReDoc)
- Docker & Docker Compose installed
-
Navigate to the project root:
cd /path/to/project-root/app
-
Run Docker Compose:
docker-compose up --build
-
Check if the backend is running:
docker logs -f <backend-container-name>
-
Stop the containers when done:
docker-compose down
- Node.js 16+
- Yarn or npm
-
Navigate to the frontend directory:
cd frontend
-
Install dependencies:
yarn install # or npm install
-
Start the development server:
yarn dev # or npm run dev
-
Open the frontend in your browser:
Create a .env
file in both /app
and /frontend
and configure as needed:
OPENAI_API_KEY=your-api-key
MLFLOW_ENABLED=True
MLFLOW_EXPERIMENT_NAME=your-experiment
DATABASE_URL=sqlite:///./database.db # or Snowflake credentials
VITE_API_URL=http://localhost:8000