Skip to content

lkyddd/DSE-MVR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

DSE-MVR

Setup

This implemetation is based on Python3. To run the code, you need the following dependencies:

  • torch==1.9.0

  • scipy==1.7.2

  • numpy==1.21.2

  • sklearn==1.0.1

  • matplotlib==3.5.3

  • pandas==1.3.4

  • mpi4py==3.1.1

You can simply run

pip install -r requirements.txt

Repository structure

We select some important files for detailed description.

|-- LightFed # experiments for baselines, FedMD-CG and datasets
    |-- experiments/ #
        |-- datasets/ 
            |-- data_distributer.py/  # the load datasets,including MNIST, EMNIST, FMNSIT and CIFAR-10
        |-- horizontal/ ## FedMD-CG and baselines
            |-- DLSGD/
            |-- DSE_SGD/
            |-- DSE-MVR/
            |-- GT-HSGD/
            |-- PD-SGDM/
            |-- SLOWMo/
        |-- models
            |-- model.py/  ##load backnone architectures
    |-- lightfed/  
        |-- core # important configure
        |-- tools

Run pipeline for Run pipeline for DSE-MVR

  1. Entering the DSE-MVR
cd LightFed
cd experiments
cd horizontal
cd DSE-MVR
  1. You can run any models implemented in main.py. For examples, you can run our model on CIFAR-10 dataset by the script:
python main.py --data_partition_mode non_iid_dirichlet_balanced --non_iid_alpha 10 --client_num 10 --seed 0 --model_type Lenet --data_set CIFAR-10

And you can run other baselines, such as

cd LightFed
cd experiments
cd horizontal
cd SLOWMo
python main.py --data_partition_mode non_iid_dirichlet_balanced --non_iid_alpha 10 --client_num 10 --seed 0 --model_type Lenet --data_set CIFAR-10

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages