Skip to content

lucasb-eyer/sws

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sws

Tests codecov

Minimal, predictable, footgun-free configuration for deep learning experiments. The most similar existing ones are OmegaConf and ConfigDict - if you are happy with them, you probably don't need this. If you want some lore, have a look at the end.

The remainder of this readme follows the CODE THEN EXPLAIN layout. The example/ folder contains a nearly real-world example of structuring a project. Install instructions at the end.

Basics

from sws import Config

# Create the config and populate the fields with defaults
c = Config()
c.lr = 3e-4

# Alternative shorthand handy for very small configs:
c = Config(lr=3e-4)

# How to make a field depend on others?
c.wd = c.lr * 0.1  # ERROR: c is write-only.
# Instead, use a lambda to make the value "lazy"
c.wd = lambda: c.lr * 0.1

# Finalizing resolves all fields to plain values, and integrates CLI args:
c = c.finalize(argv=sys.argv[1:])
assert c.lr == 3e-4 and c.wd == 3e-5

train_agi(lr=c.lr, wd=c.wd)

sws clearly separates two phases: config creation, and config use. At creation time, you build a (possibly nested) Config object. To avoid subtle bugs common in many config libraries I've used before, at creation time, the Config object is write-only; you cannot read its values. Once you finished building it up, a call to c.finalize() turns it into a read-only FinalConfig object that contains "final" values for all fields.

This finalization step can also integrate overrides from, for example, commandline arguments; more on that a little later.

If you want to make one field's value depend on another field's value, you can do so by wrapping the value in a lambda, which computes the derived value. This lambda will be called during finalization, where concrete config values can be accessed. In this way, in the example above, the wd setting will use the correct value of c.lr even when it is overriden by commandline arguments during finalize. This works transitively, just as you'd expect it to.

Since callable values receive this special treatment, if you want to actually set a config field's value to an actual function, that needs to be wrapped by sws.Fn:

from sws import Fn

# If you want to store a callable as a value (not execute it at finalize), wrap it:
c.log_fn = Fn(lambda s: print(s))
c = c.finalize()

# Five moments later...
c.log_fn("After finalization, the config field is just this plain function")

Nesting

Of course any respectable config library allows nested structures:

from sws import Config

# Create the config and populate the fields with defaults
c = Config()
c.lr = 3e-4
c.model.depth = 4  # No need to create parents first.

# In a nested field, lazy and `c` work just as you'd expect them to:
c.model.width = lambda: c.model.depth * 64
c.model.emb_lr = lambda: c.lr * 10 / c.model.width

c = c.finalize()

# Pass model settings as kwargs, for example:
m = MyAGIModel(**c.model.to_dict())
train_agi(m, c.lr)

The reason we need to_dict() above is that FinalConfig implements as few methods as possible, to leave as many names as possible free to be used for configs. For instance, keys, values, and items are not implemented so that you can use them as config names. This also means, that it doesn't implement the Mapping protocol and can't be **'ed. So, just call to_dict, it's fine.

You don't really need to know this, but internally, the full config is stored as a flat dict ("model.emb_lr" is a key), and subfields are just prefix-views into that dict.

Commandline overrides

The finalize() method allows you to pass a list of argv strings to it that serve as overrides:

from sws import Config

c = Config(lr=1.0, model={"width": 128, "depth": 4})
c = c.finalize(["c.model.width=512", "c.model.depth=2+2"])

# However, we're lazy. The shortest unique segment suffix works:
c = c.finalize(["width=512", "depth=2+2"])

# In real life, you'd probably pass sys.argv[1:] instead.

Only the syntax a=b is supported, any argument without = is ignored. This is to reduce ambiguity and allow catching typos.

The values of the overrides are parsed as Python expressions using the simpleeval library. This makes a lot of Python code just work, for example you can write model.vocab=[ord(c) for c in "hello"] and it'll work. You can also access the current config using the name c, so something like 'c.model.width=3 * c.model.depth' works. Note that I quoted the whole thing, for two reasons: (1) to stop my shell from interpreting * as wildcard, and (2) because I used spaces.

For convenience, the keyname can be shortened to the shortest unique suffix across the whole config (i.e. all nesting levels). For example, model.head.lr can be shortened to head.lr or lr if unambiguous. In the case of ambiguity, sws errs on the cautious side and error out. You can always specify the full name starting with c. to be perfectly unambiguous.

sws.run and suggested code structure

The train.py file could look something like this:

import sws

# ...lots of code...

def train(c):
    # Do some AGI things, but be careful please.
    # `c` is a FinalConfig here, i.e. it's been finalized.

if __name__ == "__main__":
    sws.run(train)

This seemingly innocuous code does a lot, thanks to judiciously chosen default arguments. The full call would be sws.run(train, argv=sys.argv[1:], config_flag="--config", default_func="get_config").

First, it looks for a commandline argument --config filename.py (or --config=filename.py).

It then loads said file, and runs the get_config function defined therein, which should return a fully populated sws.Config object. Note that it's plain python code, so it may import things, have a lot of logic, feel free to do as much or as little as you want.

Finally, it finalizes the config with the remaining commandline arguments, and calls the specified function (in this example, train) with the FinalConfig.

Here's what a config file might look like, let's call it vit_i1k.py:

from sws import Config

def get_config():
    c = Config()
    c.lr = 3e-4
    c.wd = lambda: c.lr * 0.1
    c.model.name = "vit"
    c.model.depth = 8
    c.model.width = 512
    c.model.patch_size = (16, 16)
    c.dataset = "imagenet_2012"
    c.batch = 4096
    return c

Then, you would run training as python -m train --config vit_i1k.py batch=1024. In a real codebase, you'd have quite a few config files, maybe in some structured config/ folder with sub-folders per project, user, topic, ...

There's three more things sws.run does for convenience:

  • If no --config is passed, it looks for the get_config function in the file which called it. This is very convenient for quick small scripts.
  • If you use run(fn, forward_extras=True), then all unused commandline arguments, i.e. all those without a =, are passed in a list as the second argument to fn. This can be used to do further custom processing unrelated to sws. If forward_extras is False and any such extra tokens are present, sws.run raises a ValueError listing the unused arguments.
  • For extra flexibility, you can actually specify which function should be called. The syntax is --config file.py:function_name, it's just that the function name defaults to get_config. This way, you can have multiple slight variants in the same file, for example.

See the example/ folder of this repo for a semi-realistic example, including a sweep to run sweeps.

A realistic example

This is how I'd structure a codebase, roughly. See also example/ folder.

Various experiment configurations in the configs/ folder. For example, configs/super_agi.py:

from sws import Config

def get_config():
    c = Config()
    c.lr = 0.001
    c.wd = lambda: c.lr * 0.1
    c.model.depth = 4
    c.model.width = 256
    c.model.heads = lambda: 4 if c.model.width > 128 else 1
    return c

Your main code, for example train.py:

from sws import run

def main(c):
    print("Training with config:\n" + str(c))
    # Your training code here...

if __name__ == "__main__":
    run(main)

Run a different config file and override values from CLI if wanted:

python -m train --config configs/super_agi.py model.depth=32

See example/sweep.fish for a trivial sweep over a few values.

Some more misc notes

  • The FinalConfig has a nice pretty printer when cast to string or printed.
  • When a dict is assigned to a Config field, it's turned into a Config.
  • You cannot set a group to a value or vice-versa, i.e. no c.model = "vit" followed by c.model.depth = 4 or vice-versa.
  • Cycles in computed callables are detected and raise an exception at finalize.
  • When setting values via commandline args, you can use the syntax name:=value to create the exact field c.name even if it does not exist. This can be useful in rare circumstances where the codebase uses the pattern c.get("name", default) for things, and the get_config doesn't include a value for name. Use with care.
  • The FinalConfig has a .to_json() and .to_flat_json() utils that returns a string that's the json serialized config, but with non-json-serializable values replaced by an explanatory string. It's for logging/storing of configs for humans.
  • Similarly, there's the sws.from_json and sws.from_flat_json counterparts, they are provided purely for human analysis and convenience, since json is lossy wrt sws.

Installing

pip install sws-config

Testing

python -m pytest

TODOs

  • When passing commandline args, using lazy/lambda makes no more sense. So we should lift the requirement for Fn-wrapping of callables here. 'log_fn=Fn(lambda s: print(f"Log: {s}"))'.
  • finalization no more converts collections into tuples, sets into frozensets, and expands dicts. If a lazy field returns a dict, it's just a dict. Consider if this is good or bad, though it does sound obscure.

Probably overkill:

  • Auto-generate a commandline --help?
  • Auto-generate a terminal UI to browse/change config values on finalize() could be fun.
  • Keep track of which fields are affected by arg overwrites, and note that in pretty-print?

Lore

You obviously wonder "Why yet another config library, ffs?!" - and you're right. There are many, but there's none that fully pleases me. So I gave in.

I've heavily used, and hence been influenced by, many config systems in the past. Most notably ml_collections.ConfigDict and chz, both of which I generally liked, but both had quite some pitfalls after serious use, which I try to avoid here. Notable examples which I used but did not like are gin, yaml / Hydra, kauldron.konfig; they are too heavy, unpythonic, and magic; there be footguns. fiddle requires your config to import everything, which I don't like. I refuse to built around types in Python, like pydantic, tyro, dataclasses, ..., so not even linking them. Finally, I haven't used, but thoroughly read Pydra and Cue, which together inspired the two-step approach with finalization.

Why is it called sws? It's a nod to OpenAI's chz config library, and the author being a very fond resident of Switzerland.

About

Minimal, predictable, footgun-free config library.

Resources

License

Stars

Watchers

Forks

Packages

No packages published