Skip to content

An AI application platform based on large language models and RAG technology. 一款基于大型语言模型和RAG技术的AI应用平台,支持快速创建图文并茂的AI知识库和智能聊天助手。界面简洁,提供知识库管理、流程编排、模型配置、向量库对接及实时监控,帮助用户轻松构建精准智能问答系统。

License

Notifications You must be signed in to change notification settings

jeecgboot/jeecg-ai

Repository files navigation

English | 中文

Jeecg AI Platform

===============

Current Version: 1.0.0 (Release Date: 2025-12-05)

License Author Blog Version GitHub stars GitHub forks

📖 Introduction

A full-stack AI development platform designed to help developers quickly build and deploy personalized AI applications.

Jeecg-AI is an AIGC Application Development Platform similar to Dify, featuring Knowledge Base Q&A capabilities. Built on Large Language Models (LLM) and RAG (Retrieval-Augmented Generation) technology, this AI application platform focuses on providing illustrated AI knowledge bases and intelligent chat functionality. With an intuitive interface, it supports knowledge base management, AI workflow orchestration, model configuration, vector database integration, and real-time monitoring, helping users transform knowledge into intelligent AI knowledge bases for precise and intelligent Q&A.

🎥 Video Introduction

AI Video Introduction

✨ Key Features

  • 🤖 AIGC Application Development Platform - Build AI applications with ease
  • 📚 Knowledge Base Management - Create and manage intelligent knowledge bases
  • 🔄 AI Workflow Orchestration - Design complex AI workflows visually
  • 🎯 Model Configuration - Flexible integration with various LLM models
  • 💾 Vector Database Integration - Support for pgvector and other vector stores
  • 📊 Real-time Monitoring - Track and monitor AI application performance
  • 💬 Intelligent Chat - Advanced conversational AI capabilities
  • 🎨 Intuitive UI - User-friendly interface with rich visual elements

🛠️ Tech Stack

Backend

  • Java 17+ - Core programming language
  • Spring Boot 3.5.5 - Application framework
  • Spring Cloud 2025.0.0 - Microservices framework
  • Spring Cloud Alibaba 2023.0.3.3 - Cloud native components
  • Maven 3.6+ - Dependency management
  • MySQL 8.0 - Primary database
  • PostgreSQL (pgvector) - Vector database for AI embeddings
  • Redis 5.0 - Caching layer

Frontend

  • Vue 3 - Progressive JavaScript framework
  • TypeScript - Type-safe development
  • Vite - Next generation frontend tooling
  • Ant Design Vue 4.2.6 - Enterprise UI components
  • LogicFlow 2.0 - Workflow visualization
  • ECharts 5.6 - Data visualization
  • Axios - HTTP client

AI & ML

  • RAG (Retrieval-Augmented Generation) - Enhanced AI responses
  • Vector Embeddings - Semantic search capabilities
  • LLM Integration - Support for multiple language models

📋 Prerequisites

Before you begin, ensure you have the following installed:

  • Java: JDK 17, 21, or 24
  • Maven: Version 3.6 or higher
  • Node.js: Version 14 or higher
  • pnpm: Package manager
  • Docker & Docker Compose: For containerized deployment (optional)
  • MySQL: Version 8.0 or higher
  • PostgreSQL with pgvector: For vector storage
  • Redis: Version 5.0 or higher

🚀 Quick Start

Default Credentials

Username: admin
Password: 123456

Method 1: Docker Compose (Recommended)

Windows

start-docker-compose.bat

Linux/Mac

chmod +x start-docker-compose.sh
./start-docker-compose.sh

Method 2: Manual Setup

1. Clone the Repository

git clone https://github.com/jeecgboot/jeecg-ai.git
cd jeecg-ai

2. Database Setup

MySQL Setup:

# Import the database schema
mysql -u root -p < jeecg-boot/db/jeecgai-mysql-5.7.sql

PostgreSQL with pgvector Setup:

# Install pgvector extension
# See documentation: https://help.jeecg.com/aigc/config

3. Backend Setup

cd jeecg-boot

# Install dependencies
mvn clean install

# Run the application
cd jeecg-module-system/jeecg-system-start
mvn spring-boot:run

The backend server will start at: http://localhost:8080

4. Frontend Setup

cd jeecgboot-vue3

# Install dependencies
pnpm install

# Start development server
pnpm dev

The frontend application will start at: http://localhost:5173

🐳 Docker Deployment

The project includes Docker configuration for easy deployment:

# Services included:
- MySQL 8.0 (Port: 13306)
- Redis 5.0
- PostgreSQL with pgvector (Port: 5432)
- Jeecg Boot System
- Jeecg Vue3 Frontend

Start all services:

docker-compose up -d

Stop all services:

docker-compose down

📁 Project Structure

jeecg-ai/
├── jeecg-boot/                      # Backend application
│   ├── jeecg-boot-base-core/        # Core modules
│   ├── jeecg-boot-module/           # Business modules
│   │   └── jeecg-boot-module-airag/ # AI RAG module
│   ├── jeecg-module-system/         # System module
│   │   ├── jeecg-system-api/        # API layer
│   │   ├── jeecg-system-biz/        # Business logic
│   │   └── jeecg-system-start/      # Application entry
│   ├── db/                          # Database scripts
│   └── pom.xml                      # Maven configuration
│
├── jeecgboot-vue3/                  # Frontend application
│   ├── src/
│   │   ├── api/                     # API services
│   │   ├── components/              # Reusable components
│   │   ├── views/                   # Page views
│   │   ├── router/                  # Route configuration
│   │   ├── store/                   # State management
│   │   └── utils/                   # Utility functions
│   ├── build/                       # Build scripts
│   ├── public/                      # Static assets
│   └── package.json                 # NPM dependencies
│
├── docker-compose.yml               # Docker orchestration
└── README.md                        # Chinese documentation

🔧 Configuration

Backend Configuration

Edit jeecg-boot/jeecg-module-system/jeecg-system-start/src/main/resources/application.yml:

# Database configuration
spring:
  datasource:
    url: jdbc:mysql://localhost:3306/jeecgai?useUnicode=true&characterEncoding=utf8
    username: root
    password: root

# Redis configuration
  redis:
    host: localhost
    port: 6379
    
# Vector database (PostgreSQL with pgvector)
  vector:
    datasource:
      url: jdbc:postgresql://localhost:5432/vector_db
      username: postgres
      password: postgres

Frontend Configuration

Edit jeecgboot-vue3/.env.development:

# API base URL
VITE_GLOB_API_URL=/jeecgboot

# Backend server
VITE_PROXY_TARGET=http://localhost:8080

📚 Documentation

🎯 Core Modules

1. AI Application Development

Build custom AI applications with drag-and-drop workflow designer.

2. Knowledge Base Management

Create, manage, and query intelligent knowledge bases with vector search.

3. RAG Implementation

Leverage Retrieval-Augmented Generation for accurate, context-aware responses.

4. Model Integration

Integrate various LLM models including OpenAI, Claude, and custom models.

5. Workflow Orchestration

Design complex AI workflows with visual tools powered by LogicFlow.

🏗️ Building for Production

Backend

cd jeecg-boot
mvn clean package

The JAR file will be generated in jeecg-module-system/jeecg-system-start/target/

Frontend

cd jeecgboot-vue3
pnpm build

The production files will be generated in dist/

Docker Build

# Build backend
docker build -t jeecg-boot:latest ./jeecg-boot/jeecg-module-system/jeecg-system-start

# Build frontend
docker build -t jeecgboot-vue3:latest ./jeecgboot-vue3

🧪 Testing

Backend Tests

cd jeecg-boot
mvn test

Frontend Tests

cd jeecgboot-vue3
pnpm test

📱 Demo & Support

🤝 Contributing

We welcome contributions! Please follow these steps:

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

👥 Authors

Beijing GUOJU Information Technology Co., Ltd.

🙏 Acknowledgments

Special thanks to all contributors and the open-source community for their support.

📞 Contact

For business inquiries or technical support:


Star us on GitHub if you find this project helpful!

About

An AI application platform based on large language models and RAG technology. 一款基于大型语言模型和RAG技术的AI应用平台,支持快速创建图文并茂的AI知识库和智能聊天助手。界面简洁,提供知识库管理、流程编排、模型配置、向量库对接及实时监控,帮助用户轻松构建精准智能问答系统。

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published