I originally created this as a short to-do list of study topics for becoming a software engineer, but it grew to the large list you see today. After going through this study plan, I got hired as a Software Development Engineer at Amazon! You probably won't have to study as much as I did. Anyway, everything you need is here.
I studied about 8-12 hours a day, for several months. This is my story: Why I studied full-time for 8 months for a Google interview
Please Note: You won't need to study as much as I did. I wasted a lot of time on things I didn't need to know. More info about that is below. I'll help you get there without wasting your precious time.
The items listed here will prepare you well for a technical interview at just about any software company, including the giants: Amazon, Facebook, Google, and Microsoft.
Best of luck to you!
Translations:
Translations in progress:
This is my multi-month study plan for becoming a software engineer for a large company.
Required:
- A little experience with coding (variables, loops, methods/functions, etc)
- Patience
- Time
Note this is a study plan for software engineering, not frontend engineering or full-stack development. There are really super roadmaps and coursework for those career paths elsewhere (see https://roadmap.sh/ for more info).
There is a lot to learn in a university Computer Science program, but only knowing about 75% is good enough for an interview, so that's what I cover here. For a complete CS self-taught program, the resources for my study plan have been included in Kamran Ahmed's Computer Science Roadmap: https://roadmap.sh/computer-science
- What is it?
- Why use it?
- How to use it
- Don't feel you aren't smart enough
- A Note About Video Resources
- Choose a Programming Language
- Books for Data Structures and Algorithms
- Interview Prep Books
- Don't Make My Mistakes
- What you Won't See Covered
- The Daily Plan
- Coding Question Practice
- Coding Problems
- Algorithmic complexity / Big-O / Asymptotic analysis
- Data Structures
- More Knowledge
- Trees
- Trees - Intro
- Binary search trees: BSTs
- Heap / Priority Queue / Binary Heap
- balanced search trees (general concept, not details)
- traversals: preorder, inorder, postorder, BFS, DFS
- Sorting
- selection
- insertion
- heapsort
- quicksort
- mergesort
- Graphs
- directed
- undirected
- adjacency matrix
- adjacency list
- traversals: BFS, DFS
- Even More Knowledge
- Final Review
- Update Your Resume
- Find a Job
- Interview Process & General Interview Prep
- Be thinking of for when the interview comes
- Have questions for the interviewer
- Once You've Got The Job
---------------- Everything below this point is optional ----------------
- Additional Books
- System Design, Scalability, Data Handling (if you have 4+ years experience)
- Additional Learning
- Compilers
- Emacs and vi(m)
- Unix command line tools
- Information theory
- Parity & Hamming Code
- Entropy
- Cryptography
- Compression
- Computer Security
- Garbage collection
- Parallel Programming
- Messaging, Serialization, and Queueing Systems
- A*
- Fast Fourier Transform
- Bloom Filter
- HyperLogLog
- Locality-Sensitive Hashing
- van Emde Boas Trees
- Augmented Data Structures
- Balanced search trees
- AVL trees
- Splay trees
- Red/black trees
- 2-3 search trees
- 2-3-4 Trees (aka 2-4 trees)
- N-ary (K-ary, M-ary) trees
- B-Trees
- k-D Trees
- Skip lists
- Network Flows
- Disjoint Sets & Union Find
- Math for Fast Processing
- Treap
- Linear Programming
- Geometry, Convex hull
- Discrete math
- Additional Detail on Some Subjects
- Video Series
- Computer Science Courses
- Papers
If you want to work as a software engineer for a large company, these are the things you have to know.
If you missed out on getting a degree in computer science, like I did, this will catch you up and save four years of your life.
When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, or anything about trees, or how to traverse a graph. If I had to code a sorting algorithm, I can tell ya it would have been terrible. Every data structure I had ever used was built into the language, and I didn't know how they worked under the hood at all. I never had to manage memory unless a process I was running would give an "out of memory" error, and then I'd have to find a workaround. I used a few multidimensional arrays in my life and thousands of associative arrays, but I never created data structures from scratch.
It's a long plan. It may take you months. If you are familiar with a lot of this already it will take you a lot less time.
Everything below is an outline, and you should tackle the items in order from top to bottom.
I'm using GitHub's special markdown flavor, including tasks lists to track progress.
On this page, click the Code button near the top, then click "Download ZIP". Unzip the file and you can work with the text files.
If you're open in a code editor that understands markdown, you'll see everything formatted nicely.
Create a new branch so you can check items like this, just put an x in the brackets: [x]
-
Fork the GitHub repo:
https://github.com/jwasham/coding-interview-universityby clicking on the Fork button. -
Clone to your local repo:
git clone https://github.com/<YOUR_GITHUB_USERNAME>/coding-interview-university.git cd coding-interview-university git remote add upstream https://github.com/jwasham/coding-interview-university.git git remote set-url --push upstream DISABLE # so that you don't push your personal progress back to the original repo
-
Mark all boxes with X after you completed your changes:
git commit -am "Marked personal progress" git pull upstream main # keep your fork up-to-date with changes from the original repo git push # just pushes to your fork
- Successful software engineers are smart, but many have an insecurity that they aren't smart enough.
- The following videos may help you overcome this insecurity:
Some videos are available only by enrolling in a Coursera or EdX class. These are called MOOCs. Sometimes the classes are not in session so you have to wait a couple of months, so you have no access.
It would be great to replace the online course resources with free and always-available public sources, such as YouTube videos (preferably university lectures), so that you people can study these anytime, not just when a specific online course is in session.
You'll need to choose a programming language for the coding interviews you do, but you'll also need to find a language that you can use to study computer science concepts.
Preferably the language would be the same, so that you only need to be proficient in one.
When I did the study plan, I used 2 languages for most of it: C and Python
- C: Very low level. Allows you to deal with pointers and memory allocation/deallocation, so you feel the data structures
and algorithms in your bones. In higher-level languages like Python or Java, these are hidden from you. In day-to-day work, that's terrific,
but when you're learning how these low-level data structures are built, it's great to feel close to the metal.
- C is everywhere. You'll see examples in books, lectures, videos, everywhere while you're studying.
- The C Programming Language, 2nd Edition
- This is a short book, but it will give you a great handle on the C language and if you practice it a little you'll quickly get proficient. Understanding C helps you understand how programs and memory work.
- You don't need to go super deep in the book (or even finish it). Just get to where you're comfortable reading and writing in C.
- Python: Modern and very expressive, I learned it because it's just super useful and also allows me to write less code in an interview.
This is my preference. You do what you like, of course.
You may not need it, but here are some sites for learning a new language:
You can use a language you are comfortable in to do the coding part of the interview, but for large companies, these are solid choices:
- C++
- Java
- Python
You could also use these, but read around first. There may be caveats:
- JavaScript
- Ruby
Here is an article I wrote about choosing a language for the interview: Pick One Language for the Coding Interview. This is the original article my post was based on: Choosing a Programming Language for Interviews
You need to be very comfortable in the language and be knowledgeable.
Read more about choices:
See language-specific resources here
This book will form your foundation for computer science.
Just choose one, in a language that you will be comfortable with. You'll be doing a lot of reading and coding.
- Coding Interview Patterns: Nail Your Next Coding Interview (Main Recommendation)
- An insider’s perspective on what interviewers are truly looking for and why.
- 101 real coding interview problems with detailed solutions.
- Intuitive explanations that guide you through each problem as if you were solving it in a live interview.
- 1000+ diagrams to illustrate key concepts and patterns.
- Algorithms in C, Parts 1-5 (Bundle), 3rd Edition
- Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms
Your choice:
- Goodrich, Tamassia, Goldwasser
- Sedgewick and Wayne:
- Algorithms
- Free Coursera course that covers the book (taught by the authors!):
Your choice:
- Goodrich, Tamassia, and Mount
- Sedgewick and Wayne
Here are some recommended books to supplement your learning.
-
Programming Interviews Exposed: Coding Your Way Through the Interview, 4th Edition
- Answers in C++ and Java
- This is a good warm-up for Cracking the Coding Interview
- Not too difficult. Most problems may be easier than what you'll see in an interview (from what I've read)
-
Cracking the Coding Interview, 6th Edition
- answers in Java
Choose one:
- Elements of Programming Interviews (C++ version)
- Elements of Programming Interviews in Python
- Elements of Programming Interviews (Java version) - Companion Project - Method Stub and Test Cases for Every Problem in the Book
This list grew over many months, and yes, it got out of hand.
Here are some mistakes I made so you'll have a better experience. And you'll save months of time.
I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going through my notes and making flashcards, so I could review. I didn't need all of that knowledge.
Please, read so you won't make my mistakes:
Retaining Computer Science Knowledge.
To solve the problem, I made a little flashcard site where I could add flashcards of 2 types: general and code. Each card has a different formatting. I made a mobile-first website, so I could review on my phone or tablet, wherever I am.
Make your own for free:
I DON'T RECOMMEND using my flashcards. There are too many and most of them are trivia that you don't need.
But if you don't want to listen to me, here you go:

