Plotting tool to make plotting with many subfigures easier, especially for publications.
After installation gridspeccer can be used from the command line to create plots
gridspeccer [path]
You can install either from PyPi
pip install [--user] gridspeccer
or the current version from GitHub
pip install [--user] git+https://github.com/gridspeccer/gridspeccer/
For a debug version where local changes are automatically in effect, clone the repository and install it with the editable flag -e
git clone https://github.com/gridspeccer/gridspeccer
cd gridspeccer
pip install -e [--user] .
A standalone plot file that does not need data is examples/fig_setup.py, this is also used for testing, see actions.
gridspeccercan be used on specific filesgridspeccer fig_setup.pyor on folders (no argument is equivalent to CWD.), in which files that satisfyfig*.pyare searched for.- with the optional argument
--mplrc [file]one can specify a matplotlibrc to be used for plotting (two examples ingridspeccer/defaults/) - default filetype of the plot is
.pdf, for other filetypes specify, e.g.,--filetype .png - plots are saved to
../fig/by default, can be specified by--output-folder FOLDER
- python3
- matplotlib
- LaTeX (in case you want true latex and not matplotlib's Tex parser for mathtext
- Don't install using
python setup.py install, as this will create an.egg, and the defaultmatplotlibrcs will not be accessible. - Many old examples that are not executable at the moment can be found in
old_examples, to serve as inspiration for other plots. - For an example using
gridspeccersee JulianGoeltz/automised_latex_template. Recent papers utilisinggridspeccerinclude- Göltz, J.∗, Kriener, L.∗, Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., ... & Petrovici, M. A. (2021). Fast and energy-efficient neuromorphic deep learning with first-spike times. Nature Machine Intelligence, 3(9), 823-835., 3(9), 823-835. preprint at https://arxiv.org/abs/1912.11443
- Haider, P., Ellenberger, B., Kriener, L., Jordan, J., Senn, W., & Petrovici, M. A. (2021). Latent equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. Advances in Neural Information Processing Systems, 34, 17839-17851. preprint at https://arxiv.org/abs/2110.14549