Skip to content

gotalab/claude-code-marimo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Analysis with marimo and uv

Modern data analysis using reactive notebooks and fast package management.

Quick Start

  1. Install uv (one-time)

    # macOS/Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
    # Windows  
    powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
  2. Setup project

    git clone <repository>
    cd <project>
    uv sync
  3. Start exploring

    uv run marimo edit notebooks/explore.py

Project Structure

notebooks/      # Interactive analysis (marimo .py files)
src/            # Reusable functions and classes  
data/           # Raw, processed, results (git-ignored)
tests/          # Unit tests
CLAUDE.md       # Project rules and standards

Common Commands

# Edit notebooks
uv run marimo edit notebooks/explore.py

# Add packages  
uv add pandas plotly

# Run tests
uv run pytest

# Export to app
uv run marimo run notebooks/report.py --mode app

Why This Stack?

  • marimo: Reactive notebooks - no hidden state, pure Python files
  • uv: 10-100x faster than pip, reproducible environments
  • Type hints: Better code completion and error catching
  • Modular: Reusable code in src/, notebooks stay clean

Resources

For Jupyter Users

  • Notebooks are .py files (git-friendly!)
  • No more "restart kernel and run all"
  • mo.ui.slider() instead of ipywidgets
  • Convert existing notebooks: uv run marimo convert notebook.ipynb

About

Modern data analysis project template using marimo and uv with claude code.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published