LC3 and LC3 Plus are audio codecs designed for low-latency audio transport.
-
LC3 is specified by the Bluetooth Special Interset Group for the LE Audio protocol
-
LC3 Plus is defined by ETSI TS 103 634
In addition to LC3, following features of LC3 Plus are proposed:
- Frame duration of 2.5 and 5ms.
- High-Resolution mode, 48 KHz, and 96 kHz sampling rates.
The directory layout is as follows :
- include: Library interface
- src: Source files
- tools: Standalone encoder/decoder tools
- python: Python wrapper
- test: Unit testing framework
- fuzz: Roundtrip fuzz testing harness
- build: Building outputs
- bin: Compilation output
The default toolchain used is GCC. Invoke make to build the library.
$ make -jCompiled library liblc3.so will be found in bin directory.
LC3 Plus features can be selectively disabled :
LC3_PLUS=0disable the support of 2.5ms and 5ms frame durations.LC3_PLUS_HR=0turns off the support of the High-Resolution mode.
Only Bluetooth LC3 features will be included using the following command:
$ make LC3_PLUS=0 LC3_PLUS_HR=0 -jThe cc, as, ld and ar can be selected with respective Makefile variables CC,
AS, LD and AR. The AS and LD selections are optionnal, and fallback
to CC selection when not defined.
The LIBC must be set to bionic for android cross-compilation. This switch
prevent link with pthread and rt libraries, that is included in the
bionic libc.
Following example build for android, using NDK toolset.
$ make -j CC=path_to_android_ndk_prebuilt/toolchain-prefix-clang LIBC=bionicCompiled library will be found in bin directory.
Web assembly compilation is supported using LLVM WebAssembly backend. Installation of LLVM compiler and linker is needed:
# apt install clang lldThe webasm object is compiled using:
$ make CC="clang --target=wasm32"Tools can be all compiled, while invoking make as follows :
$ make toolsThe standalone encoder elc3 take a wave file as input and encode it
according given parameter. The LC3 binary file format used is the non
standard format described by the reference encoder / decoder tools.
The standalone decoder dlc3 do the inverse operation.
Refer to elc3 -h or dlc3 -h for options.
Note that elc3 output bitstream to standard output when output file is
omitted. On the other side dlc3 read from standard input when input output
file are omitted.
In such way you can easly test encoding / decoding loop with :
$ alias elc3="LD_LIBRARY_PATH=`pwd`/bin `pwd`/bin/elc3"
$ alias dlc3="LD_LIBRARY_PATH=`pwd`/bin `pwd`/bin/dlc3"
$ elc3 <in.wav> -b <bitrate> | dlc3 > <out.wav>Adding Linux aplay tools, you will be able to instant hear the result :
$ alias elc3="LD_LIBRARY_PATH=`pwd`/bin `pwd`/bin/elc3"
$ alias dlc3="LD_LIBRARY_PATH=`pwd`/bin `pwd`/bin/dlc3"
$ elc3 <in.wav> -b <bitrate> | dlc3 | aplay -D pipewireA python implementation of the encoder is provided in test diretory.
The C implementation is unitary validated against this implementation and
intermediate values given in Appendix C of the LC3 specification.
# apt install python3 python3-dev python3-pip
$ pip3 install scipy numpy$ make testRoundtrip fuzz testing harness is available in fuzz directory.
LLVM clang and clang++ compilers are needed to run fuzzing.
The encoder and decoder fuzzers can be run, for 1 million iterations, using
target respectively dfuzz and efuzz. The fuzz target runs both.
$ make efuzz # Run encoder fuzzer for 1M iteration
$ make dfuzz # Run decoder fuzzer for 1M iteration
$ make fuzz -j # Run encoder and decoder fuzzers in parallelThe implementation is qualified under the QDID 194161 as part of Google Fluoride 1.5.
The conformance reports can be found here
The codec was here subjectively evaluated in a blind listening test.
Meson build system is also available to build and install lc3 codec in Linux environment.
$ meson setup build
$ cd build && meson installA python wrapper, installed as follows, is available in the python directory.
$ python3 -m pip install .Decoding and encoding tools are provided in python/tools, like C tools,
you can easly test encoding / decoding loop with :
$ python3 ./python/tools/encoder.py <in.wav> --bitrate <bitrate> | \
python3 ./python/tools/decoder.py > <out.wav>