- Python3.7
- paddle1.5
- cv2
- numpy
- torchvision
- torch
#!pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch
#!pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision
为了最大程度上模拟评测系统中的黑盒模型,训练了以下模型
- ./paddle1.5/InceptionV4
- ./paddle1.5/VGG19
- ./paddle1.5/DistResNet
- ./paddle1.5/SE_ResNeXt101_32x4d
- ./paddle1.5/SERes32x4d
- ./paddle1.6/Alex
- ./paddle1.6/DarkNet53
- ./paddle1.6/EfficientNetB4
- ./paddle1.6/Densenet161
- ./paddle1.6/DPN131
- ./paddle1.6/ResNext101_32x8d_wsl
- ./paddle1.6/SE_ResNet50_vd
- ./paddle1.6/shuffleNetV2_swish
- ./paddle1.6/Res2Net50_26w_4s
- ./paddle1.6/HRNet_W32_C(已上传)
- ./paddle1.6/ResNeXt101_vd_32x4d
- ./paddle1.6/SEnet154_vd
- ./paddle1.6/shuffleV2_x2_0
- ./paddle1.6/DenseNet264
- ./paddle1.6/HRNet_W64_C(已上传)
- ./paddle1.6/DARTS_4M
- ./paddle1.6/DARTS_6M
为了最大程度模拟灰盒模型,训练以下模型
- ./paddle1.5/ResNeXt50_32x4dxx(已上传)
- ./paddle1.5/ResNeXt50_32x4dxxx(已上传)
- ./paddle1.5/ResNeXt50_32x4dxxxx
- ./paddle1.5/ResNeXt50_32x4dxxxxx
- ./paddle1.5/ResNeXt50_32x4dxxxxxx
- ./paddle1.5/ResNeXt50_32x4dxxxxxxxxx
- ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxx
- ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxxx
- ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxxxx
- ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxxxxx
注:这些灰盒模型是经由白盒模型参数resnext50经过对抗训练得来,每次都是扩充样本后,重新训练生成的模型参数