Skip to content
/ AI- Public

AI安全对抗,对狗的种类进行混淆,评测模型涉及白盒,黑盒,人工加固过的灰盒模型

Notifications You must be signed in to change notification settings

gmz9976/AI-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

环境需求:

  • Python3.7
  • paddle1.5
  • cv2
  • numpy
  • torchvision
  • torch

#!pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch

#!pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision

运行: python3.7 attack_code/attack_second.py

本次运行为一次添加黑盒模型的效果。部分参数配置:step=8.0/256, eps=128.0/256, t=0.6,使用T-FGSM算法

为了最大程度上模拟评测系统中的黑盒模型,训练了以下模型

  • ./paddle1.5/InceptionV4
  • ./paddle1.5/VGG19
  • ./paddle1.5/DistResNet
  • ./paddle1.5/SE_ResNeXt101_32x4d
  • ./paddle1.5/SERes32x4d
  • ./paddle1.6/Alex
  • ./paddle1.6/DarkNet53
  • ./paddle1.6/EfficientNetB4
  • ./paddle1.6/Densenet161
  • ./paddle1.6/DPN131
  • ./paddle1.6/ResNext101_32x8d_wsl
  • ./paddle1.6/SE_ResNet50_vd
  • ./paddle1.6/shuffleNetV2_swish
  • ./paddle1.6/Res2Net50_26w_4s
  • ./paddle1.6/HRNet_W32_C(已上传)
  • ./paddle1.6/ResNeXt101_vd_32x4d
  • ./paddle1.6/SEnet154_vd
  • ./paddle1.6/shuffleV2_x2_0
  • ./paddle1.6/DenseNet264
  • ./paddle1.6/HRNet_W64_C(已上传)
  • ./paddle1.6/DARTS_4M
  • ./paddle1.6/DARTS_6M

以模拟黑盒模型最大程度图片为基础,添加训练的灰盒模型,部分参数配置:step=1.5/256, eps=128/256, t=0, iteration=8,使用T-PGD算法

为了最大程度模拟灰盒模型,训练以下模型

  • ./paddle1.5/ResNeXt50_32x4dxx(已上传)
  • ./paddle1.5/ResNeXt50_32x4dxxx(已上传)
  • ./paddle1.5/ResNeXt50_32x4dxxxx
  • ./paddle1.5/ResNeXt50_32x4dxxxxx
  • ./paddle1.5/ResNeXt50_32x4dxxxxxx
  • ./paddle1.5/ResNeXt50_32x4dxxxxxxxxx
  • ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxx
  • ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxxx
  • ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxxxx
  • ./paddle1.5/ResNeXt50_32x4dxxxxxxxxxxxxx

注:这些灰盒模型是经由白盒模型参数resnext50经过对抗训练得来,每次都是扩充样本后,重新训练生成的模型参数

About

AI安全对抗,对狗的种类进行混淆,评测模型涉及白盒,黑盒,人工加固过的灰盒模型

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages