Skip to content

dablyo/dl-setup

 
 

Repository files navigation

#deep learning development enviroment

Update: I've built a quick tool based on this repo. Start running your Tensorflow project on AWS in <30seconds using Floyd. See www.floydhub.com. It's free to try out. Happy to take feature requests/feedback and answer questions - mail me [email protected].

Setting up a Deep Learning Machine from Scratch (Software) A detailed guide to setting up your machine for deep learning research. Includes instructions to install drivers, tools and various deep learning frameworks. This was tested on a 64 bit machine with Nvidia Titan X, running Ubuntu 14.04

There are several great guides with a similar goal. Some are limited in scope, while others are not up to date. This guide is based on (with some portions copied verbatim from):

Table of Contents

Basics

  • 安装好ubuntu,选择desktop amd64,至少1404版本。

Nvidia Drivers

  • Find your graphics card model

      lspci | grep -i nvidia
    
  • Go to the Nvidia website and find the latest drivers for your graphics card and system setup. You can download the driver from the website and install it, but doing so makes updating to newer drivers and uninstalling it a little messy. Also, doing this will require you having to quit your X server session and install from a Terminal session, which is a hassle.

  • We will install the drivers using apt-get. Check if your latest driver exists in the "Proprietary GPU Drivers" PPA. Note that the latest drivers are necessarily the most stable. It is advisable to install the driver version recommended on that page. Add the "Proprietary GPU Drivers" PPA repository. At the time of this writing, the latest version is 361.42, however, the recommended version is 352:

      sudo add-apt-repository ppa:graphics-drivers/ppa
      sudo apt-get update
      sudo apt-get install nvidia-352
    

"Proprietary GPU Drivers" PPA提到:
For GeForce 8 and 9 series GPUs use nvidia-340 (340.98)
For GeForce 6 and 7 series GPUs use nvidia-304 (304.132)
但是我在GTX970环境下安装340失败。
这种方法验证成功,但下载太慢,另一种我验证的方法如下,从
http://www.nvidia.com/download/driverResults.aspx/77844/en-us
下载到本地,然后参考http://www.linuxidc.com/Linux/2014-03/98097.htm
按Ctrl + Alt + F1组合键切换到控制台。
在我的环境,切换黑屏,
参考:http://blog.csdn.net/s100607108/article/details/44812375
这种情况下的话,多半是显卡驱动 的问题,解决方法为:
** 对于12.04 - 13.04版本的ubuntu来说,步骤为: a. sudo add-apt-repository ppa:bumblebee/stable
b. sudo apt-get update
c. sudo apt-get install bumblebee bumblebee-nvidia virtualgl Linux-headers-generic
d. roboot
** 对于13.10以及以后的版本,我这里是14.04,来说,需要输入如下命令行:
a. sudo add-apt-repository ppa:bumblebee/stable
b. sudo apt-get update
c. sudo apt-get install bumblebee bumblebee-nvidia primus linux-headers-generic
d. reboot

用下面的命令终止图形会话(实际只有一种):
sudo service lightdm stop
sudo service gdm stop
sudo service mdm stop

给下载的程序添加可执行权限,然后运行安装程序:
chmod +x ~/Downloads/NVIDIA-Linux-*-334.21.run
sudo sh ~/Downloads/NVIDIA-Linux-*-334.21.run

如果安装后驱动程序工作不正常,使用下面的命令进行卸载: sudo sh ~/Downloads/NVIDIA-Linux-*-334.21.run --uninstall

  • Restart your system

      sudo shutdown -r now
    
  • Check to ensure that the correct version of NVIDIA drivers are installed

      cat /proc/driver/nvidia/version
    

CUDA

  • Download CUDA 7.5 from Nvidia. Go to the Downloads directory and install CUDA

      sudo dpkg -i cuda-repo-ubuntu1404*amd64.deb
      sudo apt-get update
      sudo apt-get install cuda
    
  • Add CUDA to the environment variables

      echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
      echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
      source ~/.bashrc
    
  • Check to ensure the correct version of CUDA is installed

      nvcc -V
    
  • Restart your computer

      sudo shutdown -r now
    

Checking your CUDA Installation (Optional)

  • Install the samples in the CUDA directory. Compile them (takes a few minutes):

      /usr/local/cuda/bin/cuda-install-samples-7.5.sh ~/cuda-samples
      cd ~/cuda-samples/NVIDIA*Samples
      make -j $(($(nproc) + 1))
    

Note: (-j $(($(nproc) + 1))) executes the make command in parallel using the number of cores in your machine, so the compilation is faster

  • Run deviceQuery and ensure that it detects your graphics card and the tests pass

      bin/x86_64/linux/release/deviceQuery
    
  • 我的输出如下:


wang@wang:~/cuda-samples/NVIDIA_CUDA-7.5_Samples/bin/x86_64/linux/ CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 970"
CUDA Driver Version / Runtime Version 8.0 / 7.5
CUDA Capability Major/Minor version number: 5.2
Total amount of global memory: 4034 MBytes (4229627904 bytes)
(13) Multiprocessors, (128) CUDA Cores/MP: 1664 CUDA Cores
GPU Max Clock rate: 1253 MHz (1.25 GHz)
Memory Clock rate: 3505 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 1835008 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 7.5, NumDevs = 1, Device0 = GeForce GTX 970
Result = PASS

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1080"
CUDA Driver Version / Runtime Version 8.0 / 7.5
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 8110 MBytes (8504279040 bytes)
MapSMtoCores for SM 6.1 is undefined. Default to use 128 Cores/SM
MapSMtoCores for SM 6.1 is undefined. Default to use 128 Cores/SM
(20) Multiprocessors, (128) CUDA Cores/MP: 2560 CUDA Cores
GPU Max Clock rate: 1734 MHz (1.73 GHz)
Memory Clock rate: 5005 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 2097152 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 7.5, NumDevs = 1, Device0 = GeForce GTX 1080 Result = PASS

cuDNN

  • cuDNN is a GPU accelerated library for DNNs. It can help speed up execution in many cases. To be able to download the cuDNN library, you need to register in the Nvidia website at https://developer.nvidia.com/cudnn. This can take anywhere between a few hours to a couple of working days to get approved. Once your registration is approved, download cuDNN v4 for Linux. The latest version is cuDNN v5, however, not all toolkits support it yet.

  • Extract and copy the files

      cd ~/Downloads/
      tar xvf cudnn*.tgz
      cd cuda
      sudo cp */*.h /usr/local/cuda/include/
      sudo cp */libcudnn* /usr/local/cuda/lib64/
      sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
    

公司环境改为cuDNN 5.1,deb格式安装。之前删除v4安装的.h和lib文件。
貌似对后边的torch没影响.
0223修改,因为deep-anpr运行出错,重新改为cuDNN 4.0 运行环境增加export CUDA-HOME=/usr/local/cuda

Check

  • You can do a check to ensure everything is good so far using the nvidia-smi command. This should output some stats about your GPU wang@wang:~/dl-setup$ sudo nvidia-smi
    Sat Feb 11 22:02:40 2017
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 367.57 Driver Version: 367.57 |
    |-------------------------------+----------------------+----------------------+
    | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
    | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
    |===============================+======================+======================|
    | 0 GeForce GTX 970 Off | 0000:01:00.0 On | N/A |
    | 0% 44C P8 16W / 200W | 268MiB / 4033MiB | 0% Default |
    +-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1039 G /usr/bin/X 158MiB |
| 0 2101 G compiz 108MiB |
+-----------------------------------------------------------------------------+


+-----------------------------------------------------------------------------+ | NVIDIA-SMI 367.57 Driver Version: 367.57 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce GTX 1080 Off | 0000:01:00.0 On | N/A | | 29% 40C P8 8W / 180W | 123MiB / 8110MiB | 0% Default | +-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 1069 G /usr/bin/X 93MiB | | 0 2020 G compiz 27MiB | +-----------------------------------------------------------------------------+

Python Packages

  • Install some useful Python packages using apt-get. There are some version incompatibilities with using pip install and TensorFlow ( see tensorflow/tensorflow#2034)

      sudo apt-get update && apt-get install -y python-numpy python-scipy python-nose \
                                              python-h5py python-skimage python-matplotlib \
                                      python-pandas python-sklearn python-sympy
      sudo apt-get clean && sudo apt-get autoremove
      rm -rf /var/lib/apt/lists/*
    

Tensorflow

  • This installs v0.8 with GPU support. Instructions below are from here
    阿里的镜像没有python-pip python-dev,这里要将系统默认的源加入进来.这里有些慢。
    sudo apt-get install python-pip python-dev sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0-cp27-none-linux_x86_64.whl

  • Run a test to ensure your Tensorflow installation is successful. When you execute the import command, there should be no warning/error.

      python
      >>> import tensorflow as tf
      >>> exit()
    

以上步骤对tensorflow1.0.0不适用,改为如下方式:
参考:https://www.tensorflow.org/install/install_linux
安装virtualenv方式
sudo apt-get install python-pip python-dev python-virtualenv
virtualenv --system-site-packages $targetDirectory
这里targetDiredtory选择~/tensorflow
source ~/tensorflow/bin/activate
pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0-cp27-none-linux_x86_64.whl
这里是python2.7 with gpu support,更多参考:
https://www.tensorflow.org/install/install_linux#TF_PYTHON_URL
验证安装:
source ~/tensorflow/bin/activate
python
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
deactivate
每次进入环境前激活,退出时去激活

OpenBLAS

< --OK torch 安装,运行install-deps时,也会安装一次,这里的安装不是必须的>

  • OpenBLAS is a linear algebra library and is faster than Atlas. This step is optional, but note that some of the following steps assume that OpenBLAS is installed. You'll need to install gfortran to compile it.

      mkdir ~/git
      cd ~/git
      git clone https://github.com/xianyi/OpenBLAS.git
      cd OpenBLAS
      make FC=gfortran -j $(($(nproc) + 1))
      sudo make PREFIX=/usr/local install
    
  • Add the path to your LD_LIBRARY_PATH variable

      echo 'export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH' >> ~/.bashrc
    

Common Tools

  • Install some common tools from the Scipy stack

      sudo apt-get install -y libfreetype6-dev libpng12-dev
    
  •   pip install -U matplotlib ipython[all] jupyter pandas scikit-image     
       ipython出错,改用方法如http://ipython.org/install.html,先到https://github.com/ipython/ipython/releases下载5.2.2版本源码,然后pip install .  
      这里使sudo方式安装
    

Caffe

没有安装

  • The following instructions are from here. The first step is to install the pre-requisites

      sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
      sudo apt-get install --no-install-recommends libboost-all-dev
      sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
    
  • Clone the Caffe repo

      cd ~/git
      git clone https://github.com/BVLC/caffe.git
      cd caffe
      cp Makefile.config.example Makefile.config
    
  • If you installed cuDNN, uncomment the USE_CUDNN := 1 line in the Makefile

      sed -i 's/# USE_CUDNN := 1/USE_CUDNN := 1/' Makefile.config
    
  • If you installed OpenBLAS, modify the BLAS parameter value to open

      sed -i 's/BLAS := atlas/BLAS := open/' Makefile.config
    
  • Install the requirements, build Caffe, build the tests, run the tests and ensure that all tests pass. Note that all this takes a while

      sudo pip install -r python/requirements.txt
      make all -j $(($(nproc) + 1))
      make test -j $(($(nproc) + 1))
      make runtest -j $(($(nproc) + 1))
    
  • Build PyCaffe, the Python interface to Caffe

      make pycaffe -j $(($(nproc) + 1))
    
  • Add Caffe to your environment variable

      echo 'export CAFFE_ROOT=$(pwd)' >> ~/.bashrc
      echo 'export PYTHONPATH=$CAFFE_ROOT/python:$PYTHONPATH' >> ~/.bashrc
      source ~/.bashrc
    
  • Test to ensure that your Caffe installation is successful. There should be no warnings/errors when the import command is executed.

      ipython
      >>> import caffe
      >>> exit()
    

Theano

没有安装

  • Install the pre-requisites and install Theano. These instructions are sourced from here

      sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ python-pygments python-sphinx python-nose
      sudo pip install Theano
    
  • Test your Theano installation. There should be no warnings/errors when the import command is executed.

      python
      >>> import theano
      >>> exit()
    

Keras

没有安装

  • Keras is a useful wrapper around Theano and Tensorflow. By default, it uses Theano as the backend. See here for instructions on how to change this to Tensorflow.

      sudo pip install keras
    

Torch

OK

  • Instructions to install Torch below are sourced from here. The installation takes a little while

      git clone https://github.com/torch/distro.git ~/git/torch --recursive
      cd torch
      bash install-deps;   这一步也会安装OpenBLAS。  
      ./install.sh 这步报错,根据
    

公司环境,cudnn已经从v4换成v5。看起来似乎和cuda 7.5(nvcc)不支持passcal架构GTX1080(v6.1)。
家里的环境,cudnn是v4,cuda7.5,maxwell架构GTX970(V5.2),如下是家里环境的torch安装输出:

Found CUDA on your machine. Installing CUDA packages
Building on 4 cores
-- Found Torch7 in /home/wang/git/torch/install
-- TH_LIBRARIES: TH
-- MAGMA not found. Compiling without MAGMA support
-- Autodetected CUDA architecture(s): 5.2
-- got cuda version 7.5
-- Found CUDA with FP16 support, compiling with torch.CudaHalfTensor
-- CUDA_NVCC_FLAGS: -gencode;arch=compute_52,code=sm_52; -DCUDA_HAS_FP16=1
-- THC_SO_VERSION: 0
-- Configuring done
-- Generating done
-- Build files have been written to: /home/wang/git/torch/extra/cutorch/build

如下是公司环境的输出:
......
Building on 4 cores
-- Found Torch7 in /home/wang/git/torch/install
-- TH_LIBRARIES: TH
-- MAGMA not found. Compiling without MAGMA support
-- Autodetected CUDA architecture(s): 6.1
-- got cuda version 7.5
-- Found CUDA with FP16 support, compiling with torch.CudaHalfTensor -- CUDA_NVCC_FLAGS: -gencode;arch=compute_61,code=sm_61;-DCUDA_HAS_FP16=1
-- THC_SO_VERSION: 0
-- Configuring done
-- Generating done
-- Build files have been written to: /home/wang/git/torch/extra/cutorch/build

......
nvcc fatal : Unsupported gpu architecture 'compute_61'
......
问题看起来应该是cuda7.5的nvcc不支持passcal架构6.1。
这篇文章http://stackoverflow.com/questions/41698195/nvcc-fatal-unsupported-gpu-architecture-compute-61-while-cuda-8-0-is-install 的问题提出者后来升级cuda8.0还是报这个错,他提到将cudnn v4改为v5可解决,但是我在公司环境没效果。尝试如下步骤解决:
上述arch参数在~/git/torch/install/share/cmake/torch/FindCUDA/select_compute_arch.cmake中181行,强制改为5.2,而不是检测出的6.1。

list(APPEND nvcc_flags -gencode arch=compute_${arch},code=sm_${arch})
list(APPEND nvcc_archs_readable sm_${arch})
改为
list(APPEND nvcc_flags -gencode arch=compute_52,code=sm_52)
list(APPEND nvcc_archs_readable sm_52)
安装脚本install.sh的94行开始的一段,会覆盖cmake文件,因此屏蔽掉
if [ -x "$path_to_nvcc" ] || [ -x "$path_to_nvidiasmi" ]
then
echo "Found CUDA on your machine. Installing CMake 3.6 modules to get up-to-date FindCUDA"
cd ${THIS_DIR}/cmake/3.6 && \
(cmake -E make_directory build && cd build && cmake .. -DCMAKE_INSTALL_PREFIX="${PREFIX}" \
&& make install) && echo "FindCuda bits of CMake 3.6 installed" || exit 1
fi
架构数字有 2.0 2.1 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.2,可以再试试5.3和6.0,特别是6.0
关于这些数字的含义,可以参考这个,虽然不太全
https://developer.nvidia.com/cuda-gpus
1. 1152 Kepler Cores with Compute Capability 3.0
2. 640 Maxwell Cores with higher clocks and Compute Capability 5.0 or 5.2
select_compute_arch.cmake的开始部分的描述是:
NAME: Fermi Kepler Maxwell Kepler+Tegra Kepler+Tesla Maxwell+Tegra Pascal
NUM: Any number. Only those pairs are currently accepted by NVCC though:
2.0 2.1 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.2

opencv and others

sudo apt-get install libopencv-dev
sudo apt-get install python-opencv

X2Go

  • If your deep learning machine is not your primary work desktop, it helps to be able to access it remotely. X2Go is a fantastic remote access solution. You can install the X2Go server on your Ubuntu machine using the instructions below.

      sudo apt-get install software-properties-common
      sudo add-apt-repository ppa:x2go/stable
      sudo apt-get update
      sudo apt-get install x2goserver x2goserver-xsession
    
  • X2Go does not support the Unity desktop environment (the default in Ubuntu). I have found XFCE to work pretty well. More details on the supported environmens here

      sudo apt-get update
      sudo apt-get install -y xfce4 xfce4-goodies xubuntu-desktop
    
  • Find the IP of your machine using

      hostname -I
    
  • You can install a client on your main machine to connect to your deep learning server using the above IP. More instructions here depending on your Client OS


docker相关的安装:
https://docs.docker.com/engine/installation/linux/ubuntu/#install-using-the-repository
*Uninstall old versions
$ sudo apt-get remove docker docker-engine
*only for 1404
$ sudo apt-get update
$ sudo apt-get install \
linux-image-extra-$(uname -r) \
linux-image-extra-virtual
*docker-ce setup the repository
Install packages to allow apt to use a repository over HTTPS:
$ sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common
Add Docker’s official GPG key:
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

    $ sudo add-apt-repository \  
         "deb [arch=amd64] https://download.docker.com/linux/ubuntu \  
         $(lsb_release -cs) \  
         stable"  

    $ sudo apt-get update  
    $ sudo apt-get install docker-ce  

配置docker镜像
注册阿里云开发者帐号帐号 https://cr.console.aliyun.com/
登陆后取得专属加速器地址,类似这样https://xxxxxx.mirror.aliyuncs.com
加速器下有相关说明,ubuntu一节,配置后,重启服务,使用service docker restart
然后验证:
$ sudo docker-ce pull hello-world
$ sudo docker-ce run hello-world
也参考了:http://cloud.51cto.com/art/201501/463536.htm

参考: https://www.tensorflow.org/install/install_linux#InstallingDocker
https://github.com/NVIDIA/nvidia-docker
安装 nvidia-docker
$ wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
$ sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb
验证:
$ sudo nvidia-docker pull nvidia/cuda
$ nvidia-docker run --rm nvidia/cuda nvidia-smi
tensorflow镜像信息:
https://hub.docker.com/r/tensorflow/tensorflow/tags/
下载:
$ sudo nvidia-docker pull tensorflow/tensorflow:latest-gpu
$ sudo nvidia-docker pull tensorflow/tensorflow:latest-gpu-py3

上文在nvidia-docker run若出现
docker: Error response from daemon: create nvidia_driver_367.57: VolumeDriver.Create: internal error, check logs for details
日志文件在
/var/log/upstart/nvidia-docker.log
内容
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:57:52 Successfully terminated^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:58:10 Loading NVIDIA unified memory^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:58:10 Loading NVIDIA management library^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:58:11 Discovering GPU devices^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:58:11 Provisioning volumes at /var/lib/nvidia-docker/volumes^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:58:11 Serving plugin API at /usr/local/nvidia-docker^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:58:11 Serving remote API at localhost:3476^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:59:17 Received activate request^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:59:17 Plugins activated [VolumeDriver]^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:59:17 Received create request for volume 'nvidia_driver_367.57'^M
/usr/bin/nvidia-docker-plugin | 2017/03/14 22:59:17 Error: link /usr/lib/nvidia-367/bin/nvidia-cuda-mps-control /var/lib/nvidia-docker/volumes/nvidia_driver/367.57/bin/nvidia-cuda-mps-control: invalid cross-device link
看起来似乎是/usr和/var不在同一分区,没法做跨分区的链接,解决办法参考:
NVIDIA/nvidia-docker#133
https://github.com/NVIDIA/nvidia-docker/wiki/nvidia-docker-plugin
ps -ef|grep nvidia查看,有输出:
nvidia-+ 607 1 0 06:36 ? 00:00:00 /usr/bin/nvidia-docker-plugin -s /var/lib/nvidia-docker
期望的样式
/usr/bin/nvidia-docker-plugin -s /var/lib/nvidia-docker -d /usr/local/nvidia-docker

nvidia-docker的启动脚本在
/etc/init/nvidia-docker.conf
其OPTS参数在
/etc/default/nvidia-docker

NVIDIA_DOCKER_PLUGIN_OPTS="-s /var/lib/nvidia-docker"
修改为:
NVIDIA_DOCKER_PLUGIN_OPTS="-s /usr/local/nvidia-docker -d /usr/local/nvidia-docker"
重启机器,验证成功
sudo nvidia-docker run --rm nvidia/cuda
ps -ef|grep nvidia
有输出
nvidia-+ 607 1 0 06:36 ? 00:00:00 /usr/bin/nvidia-docker-plugin -s /usr/local/nvidia-docker -d /usr/local/nvidia-docker


linux remote x windows based ssh

  1. /etc/ssh/sshd_config
    AllowTcpForwarding yes
    X11Forwarding yes
  2. login ssh -q -X user@remotehost

About

Instructions for setting up the software on your deep learning machine

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published