Checkout cudarc on crates.io and docs.rs.
Contributions welcome!
Safe CUDA wrappers for:
| library | dynamic load | dynamic link | static link | 
|---|---|---|---|
| CUDA driver | ✅ | ✅ | ❌ | 
| NVRTC | ✅ | ✅ | ✅ | 
| cuRAND | ✅ | ✅ | ✅ | 
| cuBLAS | ✅ | ✅ | ✅ | 
| cuBLASLt | ✅ | ✅ | ✅ | 
| NCCL | ✅ | ✅ | ✅ | 
| cuDNN | ✅ | ✅ | ✅ | 
| cuSPARSE | ✅ | ✅ | ✅ | 
| cuSOLVER | ✅ | ✅ | ❌ | 
| cuFILE | ✅ | ✅ | ✅ | 
| CUPTI | ✅ | ✅ | ✅ | 
| nvtx | ✅ | ✅ | ❌ | 
CUDA Versions supported
- 11.4-11.8
 - 12.0-12.9
 - 13.0
 
CUDNN versions supported:
- 9.12.0
 
NCCL versions supported:
- 2.28.3
 
Select cuda version with one of:
-F cuda-version-from-build-system: At build time will get the cuda toolkit version usingnvcc-F fallback-latest: can be used to control behavior if this fails. default is not enabled, which will cause the build script to panic. if-F fallback-latestis enabled, we will use the highest bindings we have.
-F cuda-<major>0<minor>0to build for a specific version of cuda
By default we use -F dynamic-loading, which will not require any libraries to be present at build time.
You can also enable -F dynamic-linking or -F static-linking for your use case.
It's easy to create a new device and transfer data to the gpu:
// Get a stream for GPU 0
let ctx = cudarc::driver::CudaContext::new(0)?;
let stream = ctx.default_stream();
// copy a rust slice to the device
let inp = stream.memcpy_stod(&[1.0f32; 100])?;
// or allocate directly
let mut out = stream.alloc_zeros::<f32>(100)?;You can also use the nvrtc api to compile kernels at runtime:
let ptx = cudarc::nvrtc::compile_ptx("
extern \"C\" __global__ void sin_kernel(float *out, const float *inp, const size_t numel) {
    unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < numel) {
        out[i] = sin(inp[i]);
    }
}")?;
// Dynamically load it into the device
let module = ctx.load_module(ptx)?;
let sin_kernel = module.load_function("sin_kernel")?;cudarc provides a very simple interface to launch kernels using a builder pattern to specify kernel arguments:
let mut builder = stream.launch_builder(&sin_kernel);
builder.arg(&mut out);
builder.arg(&inp);
builder.arg(&100usize);
unsafe { builder.launch(LaunchConfig::for_num_elems(100)) }?;And of course it's easy to copy things back to host after you're done:
let out_host: Vec<f32> = stream.memcpy_dtov(&out)?;
assert_eq!(out_host, [1.0; 100].map(f32::sin));Goals are:
- As safe as possible (there will still be a lot of unsafe due to ffi & async)
 - As ergonomic as possible
 - Allow mixing of high level 
safeapis, with low levelsysapis 
To that end there are three levels to each wrapper (by default the safe api is exported):
use cudarc::driver::{safe, result, sys};
use cudarc::nvrtc::{safe, result, sys};
use cudarc::cublas::{safe, result, sys};
use cudarc::cublaslt::{safe, result, sys};
use cudarc::curand::{safe, result, sys};
use cudarc::nccl::{safe, result, sys};where:
sysis the raw ffi apis generated with bindgenresultis a very small wrapper around sys to returnResultfrom each functionsafeis a wrapper around result/sys to provide safe abstractions
Heavily recommend sticking with safe APIs
Dual-licensed to be compatible with the Rust project.
Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0 or the MIT license http://opensource.org/licenses/MIT, at your option. This file may not be copied, modified, or distributed except according to those terms.