Skip to content

cogcities/rrp9-civic-angel

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RR-PLingua: Relevance Realization Enhanced Membrane Computing

RR-PLingua is an advanced membrane computing framework that integrates Relevance Realization (RR) dynamics with OpenCog AtomSpace symbolic reasoning, creating a unified platform for membrane computing with cognitive architectures.

🧠 RR-RNN: Relevance Realization with Recursive Neural Networks

This implementation extends the traditional P-Lingua framework with four major Next Development Directions, creating a sophisticated system for symbolic-subsymbolic integration in membrane computing environments.

✨ Key Features

  • 🔗 Advanced PLN Integration: Probabilistic Logic Networks with RR pattern reasoning
  • 💬 Enhanced Scheme Interface: Interactive REPL for system exploration and manipulation
  • 💾 Persistent AtomSpace: JSON serialization and incremental learning capabilities
  • 🏗️ Multi-Level Integration: Hierarchical membrane structures with cross-level emergence

🎯 Implementation Summary

1. Advanced PLN Integration ✅

File: include/pln_integration.hpp

  • PLN Truth Values: Complete implementation with strength/confidence pairs
  • Inference Rules:
    • Deduction: A→B, A ⊢ B
    • Abduction: A→B, B ⊢ A (with reduced confidence)
  • RR Pattern Implications: Automatic generation of implications from high-coupling agent-arena relationships
  • Full Inference Cycle: Integrated PLN reasoning over membrane structures

2. Enhanced Scheme Interface ✅

File: include/scheme_interface.hpp

  • Interactive REPL: Full Scheme-style command evaluation
  • Command Set: 8+ commands for system exploration and manipulation
  • Pattern Matching: Query and analyze both RR and AtomSpace structures
  • Real-time Updates: Modify system state through Scheme commands

3. Persistent AtomSpace ✅

File: include/persistent_atomspace.hpp

  • JSON Serialization: Complete save/load for AtomSpace state
  • RR Hypergraph Persistence: Serialize all RR dynamics and structure
  • Incremental Learning: Merge new experiences with existing knowledge
  • Memory Consolidation: Remove low-confidence atoms to optimize storage

4. Multi-Level Integration ✅

Distributed across: relevance_realization.hpp, atomspace_integration.hpp, test files

  • Hierarchical Structures: Support for nested membrane architectures
  • Cross-Level Emergence: Detection of patterns spanning multiple hierarchy levels
  • Temporal Reasoning: Track relevance evolution over time
  • Multi-Scale Dynamics: Coordinated RR updates across system levels

🏛️ Architecture Overview

graph TD
    subgraph "Traditional P-Lingua Core"
        A[P-Lingua Source] --> B[Parser]
        B --> C[P-System Model]
        C --> D[Simulator]
        C --> E[Code Generator]
    end
    
    subgraph "RR Enhancement Layer"
        F[RR Hypergraph] --> G[Relevance Dynamics]
        G --> H[Agent-Arena-Relation Triad]
        H --> I[Trialectic Co-constitution]
    end
    
    subgraph "AtomSpace Integration"
        J[OpenCog AtomSpace] --> K[PLN Inference]
        K --> L[Pattern Recognition]
        L --> M[Symbolic Reasoning]
    end
    
    subgraph "Unified Architecture"
        N[RR-AtomSpace Bridge]
        O[Scheme Interface]
        P[Persistent Storage]
        Q[Multi-Level Coordination]
    end
    
    C --> F
    F --> J
    J --> N
    N --> O
    N --> P
    N --> Q
    
    style F fill:#e3f2fd
    style J fill:#f3e5f5
    style N fill:#e8f5e8
    style O fill:#fff3e0
Loading

🔄 RR Dynamics Process Flow

sequenceDiagram
    participant Agent as Agent Membrane
    participant Arena as Arena Membrane
    participant RR as RR Engine
    participant AtomSpace as AtomSpace
    participant PLN as PLN Engine
    
    Agent->>RR: Update salience
    Arena->>RR: Update affordances
    RR->>RR: Compute trialectic dynamics
    RR->>AtomSpace: Sync RR properties
    AtomSpace->>PLN: Generate implications
    PLN->>PLN: Perform inference cycle
    PLN->>AtomSpace: Update truth values
    AtomSpace->>RR: Feedback to RR dynamics
    RR->>Agent: Update relevance gradient
    RR->>Arena: Update coupling strength
Loading

🚀 Quick Start

Dependencies

sudo apt-get install build-essential flex bison libboost-filesystem-dev libboost-program-options-dev libfl-dev

Build & Test

# Build traditional P-Lingua
make grammar
make compiler
make simulator

# Build RR-enhanced test programs
g++ -I./include -std=c++11 -o test_rr_enhanced test_rr_enhanced.cpp
g++ -I./include -std=c++11 -o test_next_directions test_next_directions.cpp
g++ -I./include -std=c++11 -o demo_repl demo_repl.cpp

# Run comprehensive demo
./test_next_directions

Interactive RR/AtomSpace REPL

./demo_repl

Available Scheme commands:

(list-rr-nodes)           ; List all RR nodes with properties
(list-atoms)              ; Show AtomSpace contents  
(get-system-relevance)    ; Compute overall system relevance
(run-pln-inference)       ; Execute PLN reasoning cycle
(find-patterns)           ; Detect emergent patterns
(get-salience node-ID)    ; Query node salience
(update-salience node-ID VALUE) ; Modify node properties
(find-atom "NAME")        ; Search atoms by name

📊 Performance Characteristics

RR Dynamics Complexity

  • Trialectic Updates: O(n) per node per timestep
  • Coupling Computation: O(n²) for agent-arena pairs
  • Emergence Detection: O(n·m) for n agents, m arenas

AtomSpace Integration

  • RR→Atom Conversion: O(n) for n RR nodes
  • PLN Inference: O(r·a) for r rules, a atoms
  • Pattern Matching: O(p·log(a)) for p patterns

🔬 Research Applications

Cognitive Architecture Integration

  • Symbolic-Subsymbolic Bridge: RR provides the dynamic foundation for symbolic reasoning
  • Emergent Pattern Recognition: Multi-level emergence detection across membrane hierarchies
  • Adaptive Learning: Persistent storage enables incremental knowledge accumulation

Membrane Computing Enhancements

  • Dynamic Rule Selection: RR salience influences rule application priorities
  • Adaptive Membrane Behavior: Agent-arena coupling drives membrane evolution
  • Hierarchical Organization: Multi-level integration supports complex system architectures

📚 Documentation

Detailed technical documentation with diagrams covering:

Core Implementation Files

include/
├── relevance_realization.hpp    # RR framework with trialectic dynamics
├── atomspace_integration.hpp    # RR-AtomSpace bridge
├── pln_integration.hpp          # PLN inference engine
├── scheme_interface.hpp         # Interactive Scheme REPL
└── persistent_atomspace.hpp     # Serialization & persistence

test_*.cpp                       # Comprehensive test suite
demo_*.cpp                       # Interactive demonstrations

🎯 Future Extensions

The implemented framework provides the foundation for:

  1. Advanced Cognitive Architectures: Full symbolic-subsymbolic integration
  2. Distributed RR Systems: Multi-agent relevance realization networks
  3. Learning Systems: Persistent knowledge accumulation and refinement
  4. Interactive Exploration: Real-time system analysis and manipulation

🤝 Contributing

This RR-enhanced membrane computing framework represents a significant advancement toward unified cognitive architectures. Contributions are welcome in:

  • Enhanced RR dynamics algorithms
  • Additional PLN inference rules
  • Extended Scheme command sets
  • Multi-level emergence patterns
  • Performance optimizations

📄 License

Licensed under the same terms as the original P-Lingua framework.


RR-PLingua successfully bridges dynamic self-organization (RR) and symbolic reasoning (AtomSpace/PLN), representing a significant advancement toward unified cognitive architectures.

About

The RR P-Lingua language for Membrane Computing as Civic Angel Architecture

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 95.3%
  • Yacc 3.6%
  • Other 1.1%