Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -5,5 +5,5 @@ __pycache__
__test*
merged_lora*
wandb
exps
exps*
.vscode
32 changes: 27 additions & 5 deletions lora_diffusion/cli_lora_pti.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,11 +36,13 @@
PivotalTuningDatasetCapation,
extract_lora_ups_down,
inject_trainable_lora,
inject_trainable_lora_extended,
inspect_lora,
save_lora_weight,
save_all,
prepare_clip_model_sets,
evaluate_pipe,
UNET_EXTENDED_TARGET_REPLACE,
)


Expand Down Expand Up @@ -418,6 +420,8 @@ def perform_tuning(
placeholder_tokens,
save_path,
lr_scheduler_lora,
lora_unet_target_modules,
lora_clip_target_modules,
):

progress_bar = tqdm(range(num_steps))
Expand Down Expand Up @@ -467,6 +471,8 @@ def perform_tuning(
save_path=os.path.join(
save_path, f"step_{global_step}.safetensors"
),
target_replace_module_text=lora_clip_target_modules,
target_replace_module_unet=lora_unet_target_modules,
)
moved = (
torch.tensor(list(itertools.chain(*inspect_lora(unet).values())))
Expand Down Expand Up @@ -521,11 +527,12 @@ def train(
lora_rank: int = 4,
lora_unet_target_modules={"CrossAttention", "Attention", "GEGLU"},
lora_clip_target_modules={"CLIPAttention"},
use_extended_lora: bool = False,
clip_ti_decay: bool = True,
learning_rate_unet: float = 1e-4,
learning_rate_text: float = 1e-5,
learning_rate_ti: float = 5e-4,
continue_inversion: bool = True,
continue_inversion: bool = False,
continue_inversion_lr: Optional[float] = None,
use_face_segmentation_condition: bool = False,
scale_lr: bool = False,
Expand Down Expand Up @@ -690,9 +697,21 @@ def train(
del ti_optimizer

# Next perform Tuning with LoRA:
unet_lora_params, _ = inject_trainable_lora(
unet, r=lora_rank, target_replace_module=lora_unet_target_modules
)
if not use_extended_lora:
unet_lora_params, _ = inject_trainable_lora(
unet, r=lora_rank, target_replace_module=lora_unet_target_modules
)
else:
print("USING EXTENDED UNET!!!")
lora_unet_target_modules = (
lora_unet_target_modules | UNET_EXTENDED_TARGET_REPLACE
)
print("Will replace modules: ", lora_unet_target_modules)

unet_lora_params, _ = inject_trainable_lora_extended(
unet, r=lora_rank, target_replace_module=lora_unet_target_modules
)
print(f"PTI : has {len(unet_lora_params)} lora")

print("Before training:")
inspect_lora(unet)
Expand Down Expand Up @@ -720,7 +739,8 @@ def train(
)
for param in params_to_freeze:
param.requires_grad = False

else:
text_encoder.requires_grad_(False)
if train_text_encoder:
text_encoder_lora_params, _ = inject_trainable_lora(
text_encoder,
Expand Down Expand Up @@ -763,6 +783,8 @@ def train(
placeholder_token_ids=placeholder_token_ids,
save_path=output_dir,
lr_scheduler_lora=lr_scheduler_lora,
lora_unet_target_modules=lora_unet_target_modules,
lora_clip_target_modules=lora_clip_target_modules,
)


Expand Down
Loading