π₯ Intelligent Clinical Decision Support Platform powered by Azure AI
A multi-agent healthcare orchestration system that provides real-time clinical decision support for complex patient cases. Built for Microsoft Imagine Cup 2025.
-
Multi-Agent AI Architecture - 5 specialized AI agents working in concert:
- π Patient Context Agent - Synthesizes patient history
- π¬ Labs & Reports Agent - Extracts insights from lab data
- π Research Guidelines Agent - RAG-powered evidence-based recommendations
β οΈ Risk & Safety Agent - Identifies contraindications and drug interactions- π§ Orchestrator Agent - Synthesizes all inputs for clinical recommendations
-
Azure-Powered Backend:
- Azure OpenAI (GPT-4o) for clinical reasoning
- Azure Health Data Services (FHIR R4) for patient data
- Azure Document Intelligence for lab report extraction
- Azure Cognitive Search for medical guidelines RAG
- Azure Cosmos DB for persistent storage
- Azure Monitor for audit trails
-
Healthcare-Safe Design:
- Full audit logging for compliance
- Structured outputs with evidence citations
- Clinician-in-the-loop decision making
- HIPAA-ready architecture
- Frontend: React 18, TypeScript, Tailwind CSS, Radix UI, Wouter
- Backend: Express.js, TypeScript, Node.js 20
- AI/ML: Azure OpenAI, Azure Cognitive Search, Azure Document Intelligence
- Data: Azure Cosmos DB, Azure Health Data Services (FHIR R4)
- Monitoring: Azure Application Insights, Log Analytics
- Infrastructure: Bicep IaC, GitHub Actions CI/CD
- Node.js 20+
- Azure subscription with the following services:
- Azure OpenAI (GPT-4o deployment)
- Azure Health Data Services
- Azure Cognitive Search
- Azure Document Intelligence
- Azure Cosmos DB
- Azure Application Insights
# Install dependencies
npm install
# Copy environment template
cp .env.azure.example .env
# Configure Azure credentials in .env
# Then start development server
npm run devThe application will be available at http://localhost:5000
# Set deployment configuration
export RESOURCE_GROUP="healthmesh-rg"
export LOCATION="eastus2"
export ENVIRONMENT="dev"
export ADMIN_EMAIL="[email protected]"
# Deploy to Azure
./script/deploy-azure.sh-
Create Resource Group:
az group create --name healthmesh-rg --location eastus2
-
Deploy Infrastructure:
az deployment group create \ --resource-group healthmesh-rg \ --template-file infra/main.bicep \ --parameters environment=dev [email protected]
-
Build and Deploy:
npm run build az webapp deployment source config-zip \ --resource-group healthmesh-rg \ --name <webapp-name> \ --src dist.zip
Copy .env.azure.example to .env and configure:
# Azure OpenAI
AZURE_OPENAI_ENDPOINT=https://your-openai.openai.azure.com/
AZURE_OPENAI_API_KEY=your-key
AZURE_OPENAI_DEPLOYMENT=gpt-4o
# Azure Cosmos DB
AZURE_COSMOS_ENDPOINT=https://your-cosmos.documents.azure.com:443/
AZURE_COSMOS_KEY=your-key
AZURE_COSMOS_DATABASE=healthmesh
# Azure Health Data Services
AZURE_FHIR_ENDPOINT=https://your-fhir.fhir.azurehealthcareapis.com
# Azure Document Intelligence
AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT=https://your-docint.cognitiveservices.azure.com/
AZURE_DOCUMENT_INTELLIGENCE_KEY=your-key
# Azure Cognitive Search
AZURE_SEARCH_ENDPOINT=https://your-search.search.windows.net
AZURE_SEARCH_ADMIN_KEY=your-key
# Azure Monitor
APPLICATIONINSIGHTS_CONNECTION_STRING=InstrumentationKey=...βββ client/ # Frontend React application
β βββ src/
β β βββ components/ # UI components (Radix-based)
β β βββ pages/ # Route pages
β β βββ hooks/ # Custom React hooks
β β βββ lib/ # Utilities
βββ server/ # Backend Express server
β βββ azure/ # Azure service clients
β β βββ config.ts # Configuration management
β β βββ openai-client.ts
β β βββ fhir-client.ts
β β βββ document-intelligence.ts
β β βββ cognitive-search.ts
β β βββ cosmos-db.ts
β β βββ monitoring.ts
β βββ azure-agents.ts # Azure-powered AI agents
β βββ azure-routes.ts # REST API endpoints
β βββ index.ts # Server entry point
βββ shared/ # Shared TypeScript schemas
βββ infra/ # Azure Bicep IaC
β βββ main.bicep # Infrastructure definition
βββ .github/workflows/ # CI/CD pipelines
β βββ deploy.yml
βββ script/
βββ deploy-azure.sh # Deployment script
| Command | Description |
|---|---|
npm run dev |
Start development server with hot reload |
npm run build |
Build for production |
npm start |
Run production server |
npm run check |
TypeScript type checking |
./script/deploy-azure.sh |
Deploy to Azure |
GET /api/patients- List all patientsGET /api/patients/:id- Get patient by IDPOST /api/patients- Create new patientPUT /api/patients/:id- Update patientDELETE /api/patients/:id- Delete patient
GET /api/cases- List all casesGET /api/cases/:id- Get case by IDPOST /api/cases- Create new casePUT /api/cases/:id- Update casePOST /api/cases/:id/analyze- Run AI analysis
GET /api/cases/:id/lab-reports- Get case lab reportsPOST /api/cases/:id/lab-reports- Upload lab report (PDF/image)
POST /api/cases/:id/chat- Send message to clinical assistant
GET /api/dashboard/stats- Get dashboard statistics
GET /api/audit- Get audit logsGET /api/audit/:entityType/:entityId- Get entity audit trail
- All AI decisions logged to Azure Monitor
- Full audit trail for HIPAA compliance
- Managed identities for Azure service auth
- HTTPS-only with TLS 1.2+
- Role-based access control ready
This project is built for Microsoft Imagine Cup 2025 in the Healthcare category. It demonstrates:
- Technical Excellence - Multi-agent AI architecture with Azure services
- Healthcare Impact - Addresses clinical decision support challenges
- Azure Integration - Deep integration with Azure AI and health services
- Production Ready - Complete with IaC, CI/CD, and monitoring
MIT
Contributions welcome! Please read our contributing guidelines first.