A unified cognitive architecture for computational intelligence grounded in the mathematics of rooted trees and OEIS A000081.
CogPilot.jl integrates Echo State Networks, B-Series computational ridges, P-System membrane computing, and rooted tree gardens into a comprehensive framework for cognitive computational systems, all orchestrated by an ontogenetic engine driven by the OEIS A000081 sequence.
The Deep Tree Echo State Reservoir Computer (DTE-RC) represents a novel approach to computational cognition that unifies multiple paradigms:
- 🌳 Rooted Trees (A000081) as fundamental structural units of thought
- 🧬 B-Series for numerical integration and computational method synthesis
- 🌊 Echo State Networks for temporal pattern learning and memory
- 🧫 P-Systems for membrane-based evolutionary computation
- ⚡ J-Surface geometry for gradient-evolution unification
- 🔬 Ontogenetic Evolution driven by OEIS A000081
┌─────────────────────────────────────────────────────────────┐
│ LAYER 0: ONTOGENETIC ENGINE │
│ (OEIS A000081 Generator) │
│ The Mathematical Heart of the System │
└─────────────────────────────────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ LAYER 1: ROOTED TREE FOUNDATION │
│ Level Sequences • Butcher Products • Tree Algebra │
└─────────────────────────────────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ LAYER 2: B-SERIES COMPUTATIONAL RIDGES │
│ Elementary Differentials • Order Conditions • Genomes │
└─────────────────────────────────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ LAYER 3: ECHO STATE RESERVOIRS │
│ Temporal Dynamics • Pattern Learning • Memory │
└─────────────────────────────────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ LAYER 4: P-SYSTEM MEMBRANE COMPUTING │
│ Hierarchical Membranes • Evolution Rules • Multisets │
└─────────────────────────────────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ LAYER 5: MEMBRANE COMPUTING GARDENS │
│ Tree Planting • Growth • Feedback • Cross-Pollination │
└─────────────────────────────────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ LAYER 6: J-SURFACE REACTOR CORE │
│ Gradient Flow • Evolution • Symplectic Integration │
└─────────────────────────────────────────────────────────────┘
The sequence A000081 counts unlabeled rooted trees with n nodes:
n: 1 2 3 4 5 6 7 8 9 10
a: 1 1 2 4 9 20 48 115 286 719
This sequence is the ontogenetic generator for the entire system:
- Structural alphabet for tree-based computation
- Complexity measure for evolutionary fitness
- Enumeration basis for elementary differentials
- Growth pattern for self-organization
- Parameter source: ALL system parameters MUST be derived from A000081
CRITICAL PRINCIPLE: No arbitrary parameters. Every parameter must be mathematically justified through its relationship to the A000081 sequence.
Automatic Derivation Rules:
# Reservoir size: cumulative tree count
reservoir_size = sum(A000081[1:n])
# Number of membranes: tree count at order k
num_membranes = A000081[k]
# Growth rate: natural ratio between consecutive orders
growth_rate = A000081[n+1] / A000081[n]
# Mutation rate: inversely proportional to complexity
mutation_rate = 1.0 / A000081[n]The system evolves according to:
∂ψ/∂t = J(ψ) · ∇H(ψ) + R(ψ, t) + M(ψ)
Where:
- J(ψ): J-surface structure matrix (symplectic/Poisson)
- ∇H(ψ): Gradient of Hamiltonian (energy landscape)
- R(ψ, t): Reservoir echo state dynamics
- M(ψ): Membrane evolution rules
Each computational ridge is a B-series expansion:
y_{n+1} = y_n + h Σ_{τ ∈ T} b(τ)/σ(τ) · F(τ)(y_n)
Where:
- T: Set of rooted trees from A000081
- b(τ): Coefficients (genetic material)
- σ(τ): Symmetry factor of tree τ
- F(τ): Elementary differential associated with τ
using Pkg
Pkg.add(url="https://github.com/cogpy/cogpilot.jl")using CogPilot
# Automatic parameter derivation from A000081
system = DeepTreeEchoSystem(base_order=5)
# This automatically derives:
# - reservoir_size = 17 (cumulative: 1+1+2+4+9)
# - max_tree_order = 8
# - num_membranes = 2 (A000081[3] = 2)
# - growth_rate ≈ 2.22 (ratio: 20/9)
# - mutation_rate ≈ 0.11 (inverse: 1/9)
# Initialize with A000081-derived seed count
initialize!(system, seed_trees=4) # A000081[4] = 4
# Evolve the system
evolve!(system, 50, dt=0.01, verbose=true)
# Process input through the cognitive architecture
input = randn(10)
output = process_input!(system, input)
# Adapt topology during evolution
adapt_topology!(system, add_membrane=true)
# Get system status
print_system_status(system)Self-evolving computational kernels with B-series genomes:
using CogPilot.DomainKernels
# Generate consciousness kernel (self-referential, recursive)
consciousness = generate_consciousness_kernel(order=5, depth_bias=2.5)
# Generate physics kernel (Hamiltonian, symplectic)
physics = generate_physics_kernel(:hamiltonian, order=4,
conserved_quantities=[:energy])
# Self-generation through chain rule composition
offspring = OntogeneticKernel.self_generate(consciousness)
# Evolve population
population = [consciousness, physics,
[create_kernel(4) for _ in 1:18]...]
for generation in 1:30
# Evaluate fitness
for kernel in population
evaluate_kernel_fitness!(kernel, nothing, population)
end
# Selection, crossover, mutation
next_gen = evolve_generation(population,
elitism_rate=0.1,
mutation_rate=0.15)
population = next_gen
end
# Best evolved kernel
best = population[1]
println("Best fitness: $(best.fitness)")using CogPilot
using Random
Random.seed!(42)
# 1. Create system with A000081-aligned parameters
system = DeepTreeEchoSystem(base_order=5)
# 2. Initialize with proper seed count
initialize!(system, seed_trees=4) # A000081[4] = 4
# 3. Evolve system
evolve!(system, 30, verbose=true)
# 4. Process temporal inputs
for i in 1:10
input = randn(10)
output = process_input!(system, input)
println("Step $i: output norm = $(norm(output))")
end
# 5. Adapt topology
adapt_topology!(system, add_membrane=true)
evolve!(system, 20, verbose=false)
# 6. Analyze system state
status = get_system_status(system)
print_system_status(system)
# 7. Save state
save_system_state(system, "cognitive_state.txt")Generates and evolves rooted trees following A000081:
# Create A000081 generator
generator = A000081Generator(10)
# Generate trees of order 5 (yields 9 trees)
trees = generate_a000081_trees(generator, 5)
@assert length(trees) == 9
# Create ontogenetic state
state = OntogeneticState(trees)
# Self-evolve for many generations
history = self_evolve!(state, generator, 50)Computational ridges connecting rooted trees to numerical methods:
# Create ridge with specific method
ridge = create_ridge(8, method=:rk4)
# Evaluate at a point
f(y) = -y # Vector field
increment = evaluate_ridge(ridge, [1.0], f)
# Optimize coefficients
optimize_ridge!(ridge, 4, iterations=100)Temporal dynamics and pattern learning:
# Create reservoir with A000081-aligned size
reservoir = create_echo_reservoir(
reservoir_size = 17, # sum(A000081[1:5])
spectral_radius = 0.9,
sparsity = 0.1
)
# Train on temporal data
train_reservoir!(reservoir, input_sequence, target_sequence)
# Generate predictions
prediction = predict_sequence(reservoir, seed, steps=50)Hierarchical membrane structures with evolution rules:
# Create membrane reservoir
membrane_system = create_membrane_reservoir(
structure = "[[]'2 []'3]'1", # Nested membrane structure
alphabet = ["a", "b", "c"],
num_membranes = 4 # A000081[4] = 4
)
# Add evolution rules
add_evolution_rule!(membrane_system,
EvolutionRule(1, Multiset("a"=>1), Multiset("b"=>2)))
# Evolve system
evolve_membrane!(membrane_system, 10)Cultivate and cross-pollinate rooted trees:
# Create garden
garden = create_garden()
# Plant trees in specific membrane
tree_id = plant_tree!(garden, [1, 2, 3, 2], membrane_id=1)
# Grow trees naturally
grow_trees!(garden, 10)
# Cross-pollinate between membranes
cross_pollinate!(garden, membrane1=1, membrane2=2, count=5)
# Harvest feedback
feedback = harvest_feedback!(garden, membrane_id=1)Unifies gradient descent and evolution dynamics:
# Create symplectic J-surface
jsurface = create_jsurface(100, symplectic=true)
state = JSurfaceState(100, 20)
# Gradient flow on surface
gradient_flow!(jsurface, state, dt=0.01)
# Evolution step
evolution_step!(jsurface, state, mutation_rate=0.1)
# Symplectic integration
symplectic_integrate!(jsurface, state, dt=0.01)CogPilot.jl is built on and integrates deeply with the Julia SciML ecosystem:
This repository includes the following packages for streamlined development:
- BSeries.jl - B-series expansions and coefficients
- RootedTrees.jl - Rooted tree enumeration and operations
- DifferentialEquations.jl - ODE/SDE/PDE solving
- ReservoirComputing.jl - Echo state networks
- ModelingToolkit.jl - Symbolic-numeric modeling
- ModelingToolkitNeuralNets.jl - Neural universal differential equations
- NeuralPDE.jl - Physics-informed neural networks
- ParameterizedFunctions.jl - Parameterized ODEs
- DataDrivenDiffEq.jl - Equation discovery
- Catalyst.jl - Reaction network modeling
- MultiScaleArrays.jl - Hierarchical arrays
using ModelingToolkit
# Apply symbolic transformations to optimize kernel
function optimize_kernel_mtk!(kernel::OntogeneticKernel)
sys_simplified = structural_simplify(kernel.sys)
prob = ODEProblem(sys_simplified, [], (0.0, 1.0))
kernel.sys = sys_simplified
return kernel
endusing NeuralPDE, Lux
# Evolve kernels using physics-informed neural networks
function pinn_kernel_optimization(kernel, pde_system, training_data)
chain = Lux.Chain(
Lux.Dense(2, 16, Lux.tanh),
Lux.Dense(16, 16, Lux.tanh),
Lux.Dense(16, 1)
)
discretization = PhysicsInformedNN(chain, QuadratureTraining())
physics_loss = create_bseries_loss(kernel.genome, pde_system)
optimized_genome = train_pinn_kernel(kernel, discretization, physics_loss)
kernel.genome = optimized_genome
return kernel
endusing Catalyst
# Generate kernel for reaction network
rn = @reaction_network begin
k1, A + B --> C
k2, C --> D
end k1 k2
# Create reaction-optimized kernel
kernel = generate_reaction_kernel(rn, order=4)Time series prediction and chaotic system modeling:
# Train on Lorenz attractor
using CogPilot
system = DeepTreeEchoSystem(base_order=5)
initialize!(system, seed_trees=4)
# Generate Lorenz data
lorenz_data = generate_lorenz_attractor(1000)
train_on_timeseries!(system, lorenz_data)
# Predict future trajectory
prediction = predict_future(system, steps=500)Discover governing equations from data:
using CogPilot.DomainKernels
# Create kernel optimized for equation discovery
kernel = generate_universal_kernel(
"discover differential equation from data",
order=6
)
# Evolve to find best symbolic representation
optimized_kernel = evolve_for_discovery(kernel, data, 100)
equation = extract_symbolic_form(optimized_kernel)Multi-objective optimization with membrane computing:
# Create optimization landscape
system = DeepTreeEchoSystem(base_order=5)
# Define fitness landscape
fitness_fn = (x) -> pareto_fitness(x, objectives)
# Evolve toward Pareto front
evolve_multi_objective!(system, fitness_fn, generations=200)
# Extract optimal solutions
solutions = get_pareto_front(system)Model memory formation and adaptive behavior:
# Create consciousness-inspired kernel
consciousness = generate_consciousness_kernel(order=5)
# Process experience stream
for experience in experience_stream
# Update internal state
process_experience!(consciousness, experience)
# Form memories
consolidate_memory!(consciousness)
# Generate predictions
expectation = generate_expectation(consciousness)
end- DeepTreeEcho_README.md - Complete Deep Tree Echo architecture documentation
- ONTOGENETIC_KERNEL_README.md - Ontogenetic kernel system details
- IMPLEMENTATION_ROADMAP.md - Development roadmap and phases
- SCIML_INTEGRATION_STATUS.md - SciML ecosystem integration status
Run the comprehensive demos:
# Deep Tree Echo system demo
julia examples/deep_tree_echo_demo.jl
# Kernel evolution demo
julia examples/kernel_evolution_demo.jl
# Unified integration demo
julia examples/unified_integration_demo.jlRun the test suite:
# Full test suite
julia --project -e 'using Pkg; Pkg.test()'
# Specific component tests
julia test/test_ontogenetic_kernel.jl
julia test/test_a000081_alignment.jl
julia test/test_deep_tree_echo.jlCogPilot.jl/
├── src/
│ ├── DeepTreeEcho/ # Deep Tree Echo implementation
│ │ ├── DeepTreeEcho.jl # Main module
│ │ ├── A000081Parameters.jl # Parameter derivation
│ │ ├── A000081OntogeneticCore.jl # Ontogenetic engine core
│ │ ├── OntogeneticEngine.jl # Tree generation engine
│ │ ├── OntogeneticKernel.jl # Self-evolving kernels
│ │ ├── BSeriesRidge.jl # B-series computational ridges
│ │ ├── JSurfaceReactor.jl # J-surface dynamics
│ │ ├── PSystemReservoir.jl # P-system membrane computing
│ │ ├── MembraneGarden.jl # Tree cultivation
│ │ ├── DomainKernels.jl # Domain-specific generators
│ │ ├── KernelEvolution.jl # Evolutionary algorithms
│ │ └── ... # Additional components
│ ├── JJJML/ # JJJML integration
│ ├── Blocks/ # Basic blocks
│ ├── Electrical/ # Electrical components
│ ├── Mechanical/ # Mechanical components
│ ├── Thermal/ # Thermal components
│ ├── Magnetic/ # Magnetic components
│ └── Hydraulic/ # Hydraulic components
├── examples/ # Comprehensive examples
├── test/ # Test suite
├── docs/ # Documentation
├── BSeries.jl/ # BSeries package (monorepo)
├── RootedTrees.jl/ # RootedTrees package (monorepo)
├── ReservoirComputing.jl/ # ReservoirComputing package (monorepo)
├── ModelingToolkit.jl/ # ModelingToolkit package (monorepo)
├── ... (additional SciML packages)
└── README.md # This file
The system is universal in multiple senses:
- Turing Complete: Through P-systems membrane computing
- Dynamical Systems: Universal approximation via reservoir computing
- Numerical Integration: B-series completeness for ODE methods
- Evolutionary Computation: Genetic programming capabilities
Under appropriate conditions:
- Gradient Flow: Converges to local minima on J-surface
- Evolutionary Dynamics: Converges to fitness peaks via selection
- Reservoir Training: Converges via regularized least squares
- Membrane Evolution: Halts on fixed points (decidable for certain classes)
Stability ensured through:
- Echo State Property: Fading memory in reservoirs (spectral radius < 1)
- Symplectic Structure: Energy preservation in Hamiltonian systems
- Membrane Boundaries: Containment of evolution dynamics
- Tree Symmetries: Structural invariants preserved through operations
CogPilot.jl demonstrates that:
- B-Series are genetic code - Elementary differentials as DNA for numerical methods
- Trees enable reproduction - Composition operators allow kernel self-generation
- Evolution optimizes domains - Natural selection produces domain-specific solvers
- Emergence from simplicity - Complex behaviors from A000081 primitives
- Self-awareness potential - Meta-cognitive kernels modeling themselves
Julia's strengths enable this paradigm:
- Multiple dispatch: Natural expression of cognitive operations
- Symbolic + Numeric: ModelingToolkit bridges abstract and concrete
- Performance: Native speed for evolutionary iterations
- Composability: SciML packages integrate seamlessly
- Differentiability: Automatic differentiation throughout
We welcome contributions! Key areas for contribution:
- New domain-specific kernel generators
- Additional SciML package integrations
- Performance optimizations
- Documentation improvements
- Example applications
Please follow the SciML ColPrac guidelines for collaborative practices and the SciML Style Guide for code style.
MIT License - see LICENSE for details.
This project builds upon and includes components from the SciML ecosystem, each with their own licenses (typically MIT).
If you use CogPilot.jl in your research, please cite:
@software{cogpilot2024,
title={CogPilot.jl: Deep Tree Echo State Reservoir Computing},
author={CogPilot Contributors},
year={2024},
url={https://github.com/cogpy/cogpilot.jl},
note={A unified cognitive architecture grounded in OEIS A000081}
}- OEIS A000081: Cayley, A. (1857). "On the Theory of the Analytical Forms called Trees"
- B-Series: Butcher, J.C. (2016). "Numerical Methods for Ordinary Differential Equations", 3rd Edition
- Rooted Trees: Hairer, E., Nørsett, S.P., Wanner, G. (1993). "Solving Ordinary Differential Equations I: Nonstiff Problems"
- Symplectic Integration: Hairer, E., Lubich, C., Wanner, G. (2006). "Geometric Numerical Integration"
- Reservoir Computing: Jaeger, H. (2001). "The Echo State Approach to Analysing and Training Recurrent Neural Networks"
- P-Systems: Păun, G. (2000). "Computing with Membranes", Journal of Computer and System Sciences
- Echo State Networks: Lukoševičius, M., Jaeger, H. (2009). "Reservoir Computing Approaches to Recurrent Neural Network Training"
- BSeries.jl: Ranocha, H. et al. "BSeries.jl: Computing with B-series in Julia"
- RootedTrees.jl: SciML Contributors. "Rooted tree enumeration and operations"
- SciML Ecosystem: Rackauckas, C. et al. "DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia"
CogPilot.jl builds upon the incredible work of the Julia and SciML communities. Special thanks to:
- The SciML organization for the comprehensive scientific computing ecosystem
- Hendrik Ranocha for BSeries.jl
- Herbert Jaeger for pioneering reservoir computing
- Gheorghe Păun for P-system theory
- The Julia community for an exceptional programming language
CogPilot.jl: Where rooted trees grow in membrane gardens, echo through reservoir states, and evolve on the ridges of B-series, all unified by the ontogenetic engine of OEIS A000081. 🌳🧠🔬
"From the simplicity of rooted trees emerges the complexity of cognition."