Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,12 @@

S3method(marshal_model,Weka_classifier)
S3method(marshal_model,fastai_model)
S3method(marshal_model,pybytes_model)
S3method(marshal_model,tabpfn_model)
S3method(marshal_model,xgboost_cox_model)
S3method(unmarshal_model,Weka_classifier_marshaled)
S3method(unmarshal_model,fastai_model_marshaled)
S3method(unmarshal_model,pybytes_model_marshaled)
S3method(unmarshal_model,tabpfn_model_marshaled)
S3method(unmarshal_model,xgboost_cox_model_marshaled)
export(LearnerClassifAbess)
Expand Down Expand Up @@ -78,6 +80,8 @@ export(LearnerDensNonparametric)
export(LearnerDensPenalized)
export(LearnerDensPlugin)
export(LearnerDensSpline)
export(LearnerPythonClassifFastai)
export(LearnerPythonClassifTabPFN)
export(LearnerRegrAbess)
export(LearnerRegrBart)
export(LearnerRegrBlockForest)
Expand Down Expand Up @@ -153,9 +157,11 @@ export(LearnerSurvRanger)
export(LearnerSurvSVM)
export(LearnerSurvXgboostAFT)
export(LearnerSurvXgboostCox)
export(configspace_to_paramset)
export(install_learners)
export(learner_is_runnable)
export(list_mlr3learners)
export(paramset_to_configspace)
import(checkmate)
import(mlr3misc)
import(paradox)
Expand Down
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
* Add new `control_custom_fun` parameter in `surv.aorsf`
* New function `learner_is_runnable()` to check whether the
required packages to train a learner are available.
* New `LearnerPythonClassif` base class for python-powered learners.

## Bug fixes

Expand Down
136 changes: 136 additions & 0 deletions R/LearnerPythonClassif.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
LearnerPythonClassif = R6::R6Class(
"LearnerPythonClassif",
inherit = mlr3::LearnerClassif,

public = list(
initialize = function(id,
feature_types = c("logical","integer","numeric","factor","ordered"),
predict_types = c("response", "prob"),
param_set = ps(),
properties = character(),
packages = "reticulate",
label = NA_character_,
man = NA_character_,
# Python requirements
py_packages,
python_version) {

super$initialize(
id = id,
feature_types = feature_types,
predict_types = predict_types,
param_set = param_set,
properties = properties,
packages = union(c("mlr3", "mlr3extralearners"), packages),
label = label,
man = man
)
private$.py_packages = py_packages
private$.py_version = python_version
},


py_requirements = function(rhs) {
assert_ro_binding(rhs)
list(
packages = private$.py_packages,
python_version = private$.py_version
)
}
),

private = list(
.py_packages = NULL, .py_version = NULL,

.train = function(task) {
py_requirements = self$py_requirements()
do.call(assert_python_packages, py_requirements)

out = named_list()

fit = private$.train_py(task = task)
assert_list(fit, all.missing = FALSE, min.len = 1)
assert_names(names(fit), must.include = "model")

structure(
mlr3misc::insert_named(out, fit),
class = c("pybytes_model", paste0(self$id, "_model"))
)
},

.predict = function(task) {
py_requirements = self$py_requirements()
do.call(assert_python_packages, py_requirements)

newdata = ordered_features(task, self)
preds = private$.predict_py(task = task, newdata = newdata, predict_type = self$predict_type)
preds
},

# ---- subclass hooks ----
.train_py = function(x, y, pars, task, ...) {
stop("Subclass must implement .fit_py(x, y, pars, task, ...).")
},

.predict_py = function(model, newdata, predict_types, meta) {
stop("Subclass must implement .predict_py(model, newdata, predict_types, meta).")
}
)
)

# ---- Generic bytes-only marshaling for all python learners ----

#' @export
marshal_model.pybytes_model <- function(model, inplace = FALSE, ...) {
reticulate::py_require(model$py_modules, python_version = model$py_version)
pickle = reticulate::import("pickle")

raw = as.raw(pickle$dumps(model$model))

learner_class = setdiff(class(model), "pybytes_model")
if (length(learner_class) > 1L) {
stop(sprintf(
"Expected at most one learner-specific class; got: %s",
paste(learner_class, collapse = ", ")
))
}

raw_model = list(
marshaled = raw,
learner_class = learner_class,
py_modules = model$py_modules,
py_version = model$py_version
)
meta_data = setdiff(model, "model")

structure(
mlr3misc::insert_named(raw_model, meta_data),
class = c("pybytes_model_marshaled", "marshaled")
)
}

#' @export
unmarshal_model.pybytes_model_marshaled <- function(model, inplace = FALSE, ...) {
# use python requirements stored in the marshaled object
reticulate::py_require(model$py_modules, python_version = model$py_version)
pickle <- reticulate::import("pickle")
fitted <- pickle$loads(reticulate::r_to_py(model$marshaled))

classes <- if (is.null(model$learner_class)) {
"pybytes_model"
} else {
c("pybytes_model", model$learner_class)
}
meta_data = setdiff(model, "marshaled")
out = list(
model = fitted,
learner_class = classes,
py_modules = model$py_modules,
py_version = model$py_version
)

structure(
mlr3misc::insert_named(out, meta_data),
class = classes
)
}
Loading