Skip to content

TritiumR/mega-sam

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Clone

Make sure to clone the repository with the submodules by using: git clone --recursive [email protected]:TritiumR/mega-sam.git

Instructions for installing dependencies

Python Environment

The following codebase was successfully run with Python 3.10, CUDA11.8, and Pytorch2.0.1. We suggest installing the library in a virtual environment such as Anaconda.

  1. To install main libraries, run:
    conda env create -f environment.yml

  2. To install xformers for UniDepth model, follow the instructions from https://github.com/facebookresearch/xformers. If you encounter any installation issue, we suggest installing it from a prebuilt file. For example, for Python 3.10+Cuda11.8+Pytorch2.0.1, run:
    wget https://anaconda.org/xformers/xformers/0.0.22.post7/download/linux-64/xformers-0.0.22.post7-py310_cu11.8.0_pyt2.0.1.tar.bz2

    conda install xformers-0.0.22.post7-py310_cu11.8.0_pyt2.0.1.tar.bz2

  3. Compile the extensions for the camera tracking module:
    cd base; python setup.py install

Downloading pretrained checkpoints

  1. Download DepthAnything checkpoint to mega-sam/Depth-Anything/checkpoints/depth_anything_vitl14.pth

  2. Download and include RAFT checkpoint at mega-sam/cvd_opt/raft-things.pth

Running MegaSaM on in-the-wild video (Chuanruo)

  1. Put your video in data/$NAME

  2. Run the following script: ./run.sh $NAME

About

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.6%
  • Shell 2.4%