Skip to content

SlapBot/Drone-Detectron

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Drone Detection

Detection of drones using FastRCNN via CNTK's implemententation

Bounding box detection of drones (small scale quadcopters)

alt text

Installation Instructions:

Anaconda

(Install Anaconda previously or let the install-cntk.sh do it for you, recommended to do it previously)

https://www.anaconda.com/download/#linux

CNTK (linux)

Download CNTK-2.3.1 (CPU only) tar.gz = https://cntk.ai/dllc-2.3.html Extract it out.

cd /home/username/cntk/Scripts/install/linux

./install-cntk.sh --py-version 34

Above command will make an env called cntk-py34

Activate above env by command: source activate cntk-py34

Activate CNTK env by command: source "/home/slapbot/cntk/activate-cntk"

Repository

Clone the repo: git clone https://github.com/SlapBot/Drone-Detectron.git

Cd in: cd drone-detection/Detection/FastRCNN

Install AlexNet Model

Install the AlexNet Model: python install_fastrcnn.py

Install Python Package Deps

Install its deps: pip install -r requirements.txt

Install Scikit-Image: pip install scikit-image

Reinstall Broken Deps

Remove pre-installed opencv from conda (bug) and install latest one from pip via commands:

conda remove opencv

pip install opencv-python

Testing Instructions

PreProcess Data

Run Selective Search by command: python A1_GenerateInputROIs.py

Visualize the selective search results: python B1_VisualizeInputROIs.py

Check recall of proposed regions found in selective search task: python B2_EvaluateInputROIs.py

Training Model

Finally train the model using:

cntk configFile=/home/username/drone-detection/Detection/FastRCNN/proc/Drones_500/cntkFiles/fastrcnn.cntk currentDirectory=/home/username/drone-detection/Detection/FastRCNN/proc/Drones_500/cntkFiles/ NumLabels=3 NumTrainROIs=500 TrainROIDim=2000 TrainROILabelDim=1500 NumTestROIs=500 TestROIDim=2000 TestROILabelDim=1500

Evaluating and Visualizing Model

Evaluate and See the results using: python evaluateDetections.py

Change the value count to any value upto which you wanna see the results at:

drone-detection/Detection/FastRCNN/imdb_data.py L:236 visualize_multiple(visualizers[2:], count=10)

Credits

https://github.com/creiser/drone-detection

Used creiser's original repository and made various dependency and code changes to get it back to working.

About

Detection of drones using FastRCNN via CNTK's implementation.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages