Skip to content

[TNNLS2024] "DVSRNet: Deep Video Super-Resolution Based on Progressive Deformable Alignment and Temporal-Sparse Enhancement".

Notifications You must be signed in to change notification settings

QZ1-boy/DVSRNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 

Repository files navigation

DVSRNet

Code of the paper "DVSRNet: Deep Video Super-Resolution Based on Progressive Deformable Alignment and Temporal-Sparse Enhancement".

Requirements

CUDA==11.6 Python==3.7 Pytorch==1.13

Environment

conda create -n DVSRNet python=3.7 -y && conda activate DVSRNet

git clone --depth=1 https://github.com/QZ1-boy/DVSRNet && cd QZ1-boy/DVSRNet/

# given CUDA 11.6
python -m pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

python -m pip install tqdm lmdb pyyaml opencv-python scikit-image

Download Datasets and models

VSR Training Dataset:

[MMCNN dataset] MMCNN

VSR Testing Datasets:

[Myanmar dataset] Myanmar, [YUV21 dataset] YUV21, [Vid4 dataset] Vid4

Optical Flow Training and Testing Datasets:

[Sintel dataset] Sintel, [KITTI dataset] KITTI, [FlyingChairs dataset] FlyChairs, [FlyingThings3D dataset] FlyThings3D

Models: [Pre-trained Models] Pre-trained Models[Code][DVSR]

Train

python basicsr/train.py -opt options/train/ICME2/train_VSRFG_TSEM_spynet_S_MM522_VMY_x4.yml

Test

python basicsr/test.py -opt options/test/ICME2/test_VSRFG_TSEM_spynet_S_MM522_VMY_x4.yml

Citation

If this repository is helpful to your research, please cite our paper:

@article{zhu2024dvsrnet,
  title={Dvsrnet: Deep video super-resolution based on progressive deformable alignment and temporal-sparse enhancement},
  author={Zhu, Qiang and Chen, Feiyu and Zhu, Shuyuan and Liu, Yu and Zhou, Xue and Xiong, Ruiqin and Zeng, Bing},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2024},
  publisher={IEEE}
}

About

[TNNLS2024] "DVSRNet: Deep Video Super-Resolution Based on Progressive Deformable Alignment and Temporal-Sparse Enhancement".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published