Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions llm/auto_parallel/llama/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,3 +32,32 @@ cd ../../../slm/model_zoo/gpt-3/external_ops/ && python3 setup.py install && cd
参考训练脚本 **run_pretrain_auto.sh**,并开启 `to_static=1`,运行8卡 dp2mp2pp2的并行策略。

您可以参考 **run_pretrain_auto.sh**,按需求修改相关参数进行训练。

## 4.推理
推理流程包括:动态图推理 -> 动转静导出模型 -> 静态图推理。当前自动并行预训练保存的模型参数已支持用于动态图推理;动转静导出模型、静态图推理步骤请参考 [LLaMA 系列大模型运行文档](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/docs/predict/llama.md)。

以动态图自动并行训练(dp2mp2pp2)为例。
- 分布式 ckpt 合并为单卡模型参数:

```python
import paddle
import paddle.distributed as dist

ckpt_path='/path/for/dist_ckpt'
# offload=1 将参数 offload 到 CPU,减少显存占用
merged_state_dict = dist.checkpoint.load_state_dict.load_merged_state_dict(ckpt_path, offload=1)
paddle.save(unsharded_state_dict, 'model_state.pdparams')

# 上述合并的模型参数格式为Paddle原生格式,如需转换为unified_param格式(safetensors),可继续执行如下代码:
python PaddleNLP/llm/auto_parallel/utils/convert_to_safetensors.py --input_path input_path [--output_path output_path] [--split_num split_num] [--offload offload]

# 参数介绍
--input_path: 输入的单卡模型参数路径
--output_path: 可选,输出模型参数路径,默认为'./temp'
--split_num: 可选,输出的模型参数分片数,默认为 1
--offload: 可选,是否将参数 offload 到 CPU,默认为 false
```

- 动态图推理

[大模型推理教程](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/docs/predict/inference.md)
92 changes: 92 additions & 0 deletions llm/auto_parallel/utils/convert_to_safetensors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os

import paddle
from safetensors.numpy import save_file as safe_save_file

from paddlenlp.transformers.utils import dtype_byte_size
from paddlenlp.utils.env import SAFE_WEIGHTS_INDEX_NAME


def convert_to_unified_ckpt(path: str, output_dir: str = "./tmp", split_num: int = 1, offload: bool = False):
"""
Convert a single card checkpoint to the unified format.

Args:
path (str): The path to the input checkpoint file.
output_dir (str, optional): The directory where the converted files will be saved. Defaults to ".".
split_num (int, optional): The number of shards to split the weights into output_dir. Defaults to 1.
offload (bool, optional): Whether to offload the weights to CPU memory before saving them. Defaults to False.
"""

def get_sub_state_dict(sub_keys, state_dict, weight_filename, index_weight_file, total_size):
"""
Get the sub-state dict and update the index weight file and total size.
Args:
sub_keys (list): A list of keys that belong to this sub-state dict.
state_dict (dict): The original state dict.
weight_filename (str): The filename of the corresponding weight file.
index_weight_file (dict): The dictionary containing the mapping from keys to their corresponding weight filenames.
total_size (int): The total size of the model so far.
"""
sub_state_dict = {key: state_dict[key].numpy() for key in sub_keys}
for key in sub_keys:
index_weight_file[key] = weight_filename
total_size += state_dict[key].numel().item() * dtype_byte_size(state_dict[key].dtype)
return sub_state_dict, total_size

if offload:
paddle.set_device("cpu")
state_dict = paddle.load(path)
all_keys = list(state_dict.keys())
split_size = len(all_keys) // split_num
extra_keys = len(all_keys) % split_num
index_weight_file = {}
total_size = 0

os.makedirs(output_dir, exist_ok=True)

index = 0
for rank in range(split_num):
current_size = split_size + (1 if rank < extra_keys else 0)
sub_keys = all_keys[index : index + current_size]
index += current_size
weight_filename = f"model-{rank+1:04d}-of-{split_num:04d}.safetensors"
sub_state_dict, total_size = get_sub_state_dict(
sub_keys, state_dict, weight_filename, index_weight_file, total_size
)
safe_save_file(sub_state_dict, os.path.join(output_dir, weight_filename))
with open(os.path.join(output_dir, SAFE_WEIGHTS_INDEX_NAME), "w") as f:
json.dump({"metadata": {"total_size": total_size}, "weight_map": index_weight_file}, f, indent=4)


if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--input_path", type=str, required=True, help="The path to the input checkpoint file.")
parser.add_argument(
"--output_dir", type=str, default="./tmp", help="The directory where the converted files will be saved."
)
parser.add_argument(
"--split_num", type=int, default=1, help="The number of shards to split the weights into output_dir."
)
parser.add_argument(
"--offload", type=bool, help="Whether to offload the weights to CPU memory before saving them."
)
args = parser.parse_args()
convert_to_unified_ckpt(args.input_path, args.output_dir, args.split_num, args.offload)