Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 14 additions & 2 deletions encoder/perceptual_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,12 @@ def __init__(self, img_size, layer=9, batch_size=1, sess=None):
self.features_weight = None
self.loss = None

self.features_weight_placeholder = None
self.img_features_placeholder = None

self.features_weight_op = None
self.img_features_op = None

def build_perceptual_model(self, generated_image_tensor):
vgg16 = VGG16(include_top=False, input_shape=(self.img_size, self.img_size, 3))
self.perceptual_model = Model(vgg16.input, vgg16.layers[self.layer].output)
Expand All @@ -46,6 +52,12 @@ def build_perceptual_model(self, generated_image_tensor):
self.loss = tf.losses.mean_squared_error(self.features_weight * self.ref_img_features,
self.features_weight * generated_img_features) / 82890.0

self.features_weight_placeholder = tf.placeholder(self.features_weight.dtype, shape=self.features_weight.get_shape())
self.img_features_placeholder = tf.placeholder(self.ref_img_features.dtype, shape=self.ref_img_features.get_shape())

self.features_weight_op = self.features_weight.assign(self.features_weight_placeholder)
self.img_features_op = self.ref_img_features.assign(self.img_features_placeholder)

def set_reference_images(self, images_list):
assert(len(images_list) != 0 and len(images_list) <= self.batch_size)
loaded_image = load_images(images_list, self.img_size)
Expand All @@ -65,8 +77,8 @@ def set_reference_images(self, images_list):

image_features = np.vstack([image_features, np.zeros(empty_features_shape)])

self.sess.run(tf.assign(self.features_weight, weight_mask))
self.sess.run(tf.assign(self.ref_img_features, image_features))
self.sess.run(self.features_weight_op, {self.features_weight_placeholder: weight_mask})
self.sess.run(self.img_features_op, {self.img_features_placeholder: image_features})

def optimize(self, vars_to_optimize, iterations=500, learning_rate=1.):
vars_to_optimize = vars_to_optimize if isinstance(vars_to_optimize, list) else [vars_to_optimize]
Expand Down