In this repository, we apply function combinations in low-dimensional data to design Kolmogorov-Arnold Networks, referred to as FC-KAN (Function Combinations in Kolmogorov-Arnold Networks). The experiments demonstrate that these combinations improve the model performance.
Our paper "FC-KAN: Function Combinations in Kolmogorov-Arnold Networks": https://arxiv.org/abs/2409.01763
- numpy==1.26.4
- numpyencoder==0.3.0
- torch==2.3.0+cu118
- torchvision==0.18.0+cu118
- tqdm==4.66.4
- mode: working mode ("train" or "test").
- ds_name: dataset name ("mnist" or "fashion_mnist").
- model_name: type of model (bsrbf_kan, efficient_kan, fast_kan, faster_kan).
- epochs: the number of epochs.
- batch_size: the training batch size.
- n_input: The number of input neurons.
- n_hidden: The number of hidden neurons. We use only 1 hidden layer. You can modify the code (run.py) for more layers.
- n_output: The number of output neurons (classes). For MNIST, there are 10 classes.
- grid_size: The size of grid (default: 5). Use with bsrbf_kan and efficient_kan.
- spline_order: The order of spline (default: 3). Use with bsrbf_kan and efficient_kan.
- num_grids: The number of grids, equals grid_size + spline_order (default: 8). Use with fast_kan and faster_kan.
- device: use "cuda" or "cpu".
- n_examples: the number of examples in the training set used for training (default: 0, mean use all training data)
- note: A note that is saved in the model name file
- n_part: the part of data used to train data (default: 0, mean use all training data, 0.1 means 10%)
- func_list: the name of functions used in FC-KAN (default='dog,rbf'). Other functions are bs and base.
- combined_type: the type of data combination used in the output (default='quadratic', others are sum, product, sum_product, concat, max, min, mean). We are developing other combinations.
See run.sh or run_fc.sh (bash run.sh or bash run_fc.sh in BASH) for details. We trained the models on GeForce RTX 3060 Ti (with other default parameters). For example, FC-KAN models (Difference of Gaussians + B-splines) can be trained on MNIST with different output combinations.
python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "sum"
python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "product"
python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "sum_product"
python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "quadratic"
python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "concat"
- https://github.com/hoangthangta/BSRBF_KAN
- https://github.com/Blealtan/efficient-kan
- https://github.com/AthanasiosDelis/faster-kan
- https://github.com/ZiyaoLi/fast-kan/
- https://github.com/zavareh1/Wav-KAN
- https://github.com/seydi1370/Basis_Functions
- https://github.com/KindXiaoming/pykan (the original KAN)
@misc{ta2024fckan,
title={FC-KAN: Function Combinations in Kolmogorov-Arnold Networks},
author={Hoang-Thang Ta and Duy-Quy Thai and Abu Bakar Siddiqur Rahman and Grigori Sidorov and Alexander Gelbukh},
year={2024},
eprint={2409.01763},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Give me a star if you like this repo. Thanks!
If you have any questions, please contact: [email protected]. If you want to know more about me, please visit website: https://tahoangthang.com.