A tool to discover and catalog Model Context Protocol (MCP) servers from GitHub repositories. This tool automatically searches GitHub for MCP server implementations, analyzes their documentation, and generates standardized registry entries.
- Automated GitHub repository search for MCP servers
- AI-powered analysis of README files
- Registry entry generation for new servers
- Support for multiple file formats (JSON, YAML, Markdown)
- Configurable search patterns and keywords
- Node.js (v14 or higher) and npm
- GitHub Personal Access Token with repo scope
- Azure OpenAI API access (or other compatible OpenAI API provider)
-
Clone the repository:
git clone https://github.com/yourusername/mcp-server-finder.git cd mcp-server-finder
-
Install dependencies:
npm install
-
Configure environment variables: Create a
.env
file in the root directory with the following variables:GITHUB_TOKEN=your_github_personal_access_token AZURE_OPENAI_API_KEY=your_azure_openai_api_key AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/ AZURE_OPENAI_DEPLOYMENT=your_deployment_name
-
Run the server finder:
npm start
-
For custom search parameters:
npm start -- --keywords="mcp,model context protocol" --max-results=50
-
Export results to a specific format:
npm start -- --output=json --output-file=mcp-servers.json
You can customize the search behavior by modifying the config.js
file:
searchKeywords
: Array of keywords to search forexcludeKeywords
: Array of keywords to exclude from resultsmaxResults
: Maximum number of repositories to analyzeoutputFormat
: Default output format (json, yaml, markdown)registryTemplate
: Template for registry entries
- The tool searches GitHub repositories using the GitHub API and specified keywords
- For each matching repository, it fetches the README and other documentation
- The content is analyzed using Azure OpenAI to identify MCP server characteristics
- If a repository is determined to be an MCP server, a registry entry is generated
- Results are saved in the specified output format
- Go to GitHub Settings > Developer settings > Personal access tokens
- Generate a new token with the
repo
scope - Copy the token and add it to your
.env
file
- Create an Azure OpenAI resource in the Azure portal
- Deploy a model in the Azure OpenAI Studio
- Get your API key, endpoint, and deployment name from the Azure portal
- Add these credentials to your
.env
file
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.