Sagi is a production-ready, open-source LLM agent framework that combines advanced technologies to create powerful AI agents. It features:
- 🧠 Deep-research workflow architecture, more details refers to the doc
 - 🛠️ MCP (Model Context Protocol) integration, the guide of the usage of MCP refers to the doc
 - 📊 GraphRAG-powered retrieval system, HiRAG mcp server refers to the repo
 
- [2025/04] 🔥 Sigi is publicly released!
 
- Interactive Web UI
 - Advanced file chunking & indexing supports
 - Improved documentation with more demos
 
- 
System Requirements
- Docker and Docker Compose (Installation Guide)
 
 - 
Clone the Repository
git clone https://github.com/vercel/ofnil-agentic-rag-open.git cd ofnil-agentic-rag-open git submodule update --init --recursive # Download MCP servers and Markify(MinerU)
 - 
Environment Setup
cp .env.example .env
Configure the following in your
.envfile:OPENAI_API_KEY- Your OpenAI API keyBRAVE_API_KEY- Your Brave Search API keyOPENAI_BASE_URL- (Optional) Custom endpoint URL
 
- 
Build the Docker Container
./dev/setup_dc.sh
 - 
Access the Container (Choose one method)
- Option A: Use VSCode Remote Container (Recommended). You can run 
bash dev/install_vscode_extensions.shto install the basic plugins for the development. - Option B: Access via terminal:
docker exec -it "$(whoami)_chatbot_open" /bin/bash
 
 - Option A: Use VSCode Remote Container (Recommended). You can run 
 - 
Install Dependencies
pip install -r requirements.txt
 - 
Start CLI
python cli.py
 
We welcome contributions! Please feel free to submit a Pull Request.
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.