ast — Abstract syntax trees¶
Source code: Lib/ast.py
The ast module helps Python applications to process trees of the Python
abstract syntax grammar. The abstract syntax itself might change with each
Python release; this module helps to find out programmatically what the current
grammar looks like.
An abstract syntax tree can be generated by passing ast.PyCF_ONLY_AST as
a flag to the compile() built-in function, or using the parse()
helper provided in this module. The result will be a tree of objects whose
classes all inherit from ast.AST. An abstract syntax tree can be
compiled into a Python code object using the built-in compile() function.
Abstract grammar¶
The abstract grammar is currently defined as follows:
-- ASDL's 4 builtin types are:
-- identifier, int, string, constant
module Python
{
mod = Module(stmt* body, type_ignore* type_ignores)
| Interactive(stmt* body)
| Expression(expr body)
| FunctionType(expr* argtypes, expr returns)
stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment, type_param* type_params)
| AsyncFunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment, type_param* type_params)
| ClassDef(identifier name,
expr* bases,
keyword* keywords,
stmt* body,
expr* decorator_list,
type_param* type_params)
| Return(expr? value)
| Delete(expr* targets)
| Assign(expr* targets, expr value, string? type_comment)
| TypeAlias(expr name, type_param* type_params, expr value)
| AugAssign(expr target, operator op, expr value)
-- 'simple' indicates that we annotate simple name without parens
| AnnAssign(expr target, expr annotation, expr? value, int simple)
-- use 'orelse' because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| While(expr test, stmt* body, stmt* orelse)
| If(expr test, stmt* body, stmt* orelse)
| With(withitem* items, stmt* body, string? type_comment)
| AsyncWith(withitem* items, stmt* body, string? type_comment)
| Match(expr subject, match_case* cases)
| Raise(expr? exc, expr? cause)
| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
| TryStar(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
| Assert(expr test, expr? msg)
| Import(alias* names)
| ImportFrom(identifier? module, alias* names, int? level)
| Global(identifier* names)
| Nonlocal(identifier* names)
| Expr(expr value)
| Pass | Break | Continue
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr?* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Await(expr value)
| Yield(expr? value)
| YieldFrom(expr value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords)
| FormattedValue(expr value, int conversion, expr? format_spec)
| Interpolation(expr value, constant str, int conversion, expr? format_spec)
| JoinedStr(expr* values)
| TemplateStr(expr* values)
| Constant(constant value, string? kind)
-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, expr slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)
-- can appear only in Subscript
| Slice(expr? lower, expr? upper, expr? step)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
expr_context = Load | Store | Del
boolop = And | Or
operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv
unaryop = Invert | Not | UAdd | USub
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn
comprehension = (expr target, expr iter, expr* ifs, int is_async)
excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,
expr* kw_defaults, arg? kwarg, expr* defaults)
arg = (identifier arg, expr? annotation, string? type_comment)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- keyword arguments supplied to call (NULL identifier for **kwargs)
keyword = (identifier? arg, expr value)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- import name with optional 'as' alias.
alias = (identifier name, identifier? asname)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
withitem = (expr context_expr, expr? optional_vars)
match_case = (pattern pattern, expr? guard, stmt* body)
pattern = MatchValue(expr value)
| MatchSingleton(constant value)
| MatchSequence(pattern* patterns)
| MatchMapping(expr* keys, pattern* patterns, identifier? rest)
| MatchClass(expr cls, pattern* patterns, identifier* kwd_attrs, pattern* kwd_patterns)
| MatchStar(identifier? name)
-- The optional "rest" MatchMapping parameter handles capturing extra mapping keys
| MatchAs(pattern? pattern, identifier? name)
| MatchOr(pattern* patterns)
attributes (int lineno, int col_offset, int end_lineno, int end_col_offset)
type_ignore = TypeIgnore(int lineno, string tag)
type_param = TypeVar(identifier name, expr? bound, expr? default_value)
| ParamSpec(identifier name, expr? default_value)
| TypeVarTuple(identifier name, expr? default_value)
attributes (int lineno, int col_offset, int end_lineno, int end_col_offset)
}
Node classes¶
- class ast.AST¶
This is the base of all AST node classes. The actual node classes are derived from the
Parser/Python.asdlfile, which is reproduced above. They are defined in the_astC module and re-exported inast.There is one class defined for each left-hand side symbol in the abstract grammar (for example,
ast.stmtorast.expr). In addition, there is one class defined for each constructor on the right-hand side; these classes inherit from the classes for the left-hand side trees. For example,ast.BinOpinherits fromast.expr. For production rules with alternatives (aka “sums”), the left-hand side class is abstract: only instances of specific constructor nodes are ever created.- _fields¶
Each concrete class has an attribute
_fieldswhich gives the names of all child nodes.Each instance of a concrete class has one attribute for each child node, of the type as defined in the grammar. For example,
ast.BinOpinstances have an attributeleftof typeast.expr.If these attributes are marked as optional in the grammar (using a question mark), the value might be
None. If the attributes can have zero-or-more values (marked with an asterisk), the values are represented as Python lists. All possible attributes must be present and have valid values when compiling an AST withcompile().
- _field_types¶
The
_field_typesattribute on each concrete class is a dictionary mapping field names (as also listed in_fields) to their types.>>> ast.TypeVar._field_types {'name': <class 'str'>, 'bound': ast.expr | None, 'default_value': ast.expr | None}
Added in version 3.13.
- lineno¶
- col_offset¶
- end_lineno¶
- end_col_offset¶
Instances of
ast.exprandast.stmtsubclasses havelineno,col_offset,end_lineno, andend_col_offsetattributes. Thelinenoandend_linenoare the first and last line numbers of source text span (1-indexed so the first line is line 1) and thecol_offsetandend_col_offsetare the corresponding UTF-8 byte offsets of the first and last tokens that generated the node. The UTF-8 offset is recorded because the parser uses UTF-8 internally.Note that the end positions are not required by the compiler and are therefore optional. The end offset is after the last symbol, for example one can get the source segment of a one-line expression node using
source_line[node.col_offset : node.end_col_offset].
The constructor of a class
ast.Tparses its arguments as follows:If there are positional arguments, there must be as many as there are items in
T._fields; they will be assigned as attributes of these names.If there are keyword arguments, they will set the attributes of the same names to the given values.
For example, to create and populate an
ast.UnaryOpnode, you could usenode = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0), lineno=0, col_offset=0)
If a field that is optional in the grammar is omitted from the constructor, it defaults to
None. If a list field is omitted, it defaults to the empty list. If a field of typeast.expr_contextis omitted, it defaults toLoad(). If any other field is omitted, aDeprecationWarningis raised and the AST node will not have this field. In Python 3.15, this condition will raise an error.
Changed in version 3.8: Class ast.Constant is now used for all constants.
Changed in version 3.9: Simple indices are represented by their value, extended slices are represented as tuples.
Changed in version 3.14: The __repr__() output of AST nodes includes
the values of the node fields.
Deprecated since version 3.8: Old classes ast.Num, ast.Str, ast.Bytes,
ast.NameConstant and ast.Ellipsis are still available,
but they will be removed in future Python releases. In the meantime,
instantiating them will return an instance of a different class.
Deprecated since version 3.9: Old classes ast.Index and ast.ExtSlice are still
available, but they will be removed in future Python releases.
In the meantime, instantiating them will return an instance of
a different class.
Deprecated since version 3.13, will be removed in version 3.15: Previous versions of Python allowed the creation of AST nodes that were missing required fields. Similarly, AST node constructors allowed arbitrary keyword arguments that were set as attributes of the AST node, even if they did not match any of the fields of the AST node. This behavior is deprecated and will be removed in Python 3.15.
Note
The descriptions of the specific node classes displayed here were initially adapted from the fantastic Green Tree Snakes project and all its contributors.
Root nodes¶
- class ast.Module(body, type_ignores)¶
A Python module, as with file input. Node type generated by
ast.parse()in the default"exec"mode.bodyis alistof the module’s Statements.type_ignoresis alistof the module’s type ignore comments; seeast.parse()for more details.>>> print(ast.dump(ast.parse('x = 1'), indent=4)) Module( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1))])
- class ast.Expression(body)¶
A single Python expression input. Node type generated by
ast.parse()when mode is"eval".bodyis a single node, one of the expression types.>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4)) Expression( body=Constant(value=123))
- class ast.Interactive(body)¶
A single interactive input, like in Interactive Mode. Node type generated by
ast.parse()when mode is"single".bodyis alistof statement nodes.>>> print(ast.dump(ast.parse('x = 1; y = 2', mode='single'), indent=4)) Interactive( body=[ Assign( targets=[ Name(id='x', ctx=Store())], value=Constant(value=1)), Assign( targets=[ Name(id='y', ctx=Store())], value=Constant(value=2))])
- class ast.FunctionType(argtypes, returns)¶
A representation of an old-style type comments for functions, as Python versions prior to 3.5 didn’t support PEP 484 annotations. Node type generated by
ast.parse()when mode is"func_type".Such type comments would look like this:
def sum_two_number(a, b): # type: (int, int) -> int return a + b
argtypesis alistof expression nodes.returnsis a single expression node.>>> print(ast.dump(ast.parse('(int, str) -> List[int]', mode='func_type'), indent=4)) FunctionType( argtypes=[ Name(id='int', ctx=Load()), Name(id='str', ctx=Load())], returns=Subscript( value=Name(id='List', ctx=Load()), slice=Name(id='int', ctx=Load()), ctx=Load()))
Added in version 3.8.
Literals¶
- class ast.Constant(value)¶
A constant value. The
valueattribute of theConstantliteral contains the Python object it represents. The values represented can be instances ofstr,bytes,int,float,complex, andbool, and the constantsNoneandEllipsis.>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4)) Expression( body=Constant(value=123))
- class ast.FormattedValue(value, conversion, format_spec)¶
Node representing a single formatting field in an f-string. If the string contains a single formatting field and nothing else the node can be isolated otherwise it appears in
JoinedStr.valueis any expression node (such as a literal, a variable, or a function call).conversionis an integer:format_specis aJoinedStrnode representing the formatting of the value, orNoneif no format was specified. Bothconversionandformat_speccan be set at the same time.
- class ast.JoinedStr(values)¶
An f-string, comprising a series of
FormattedValueandConstantnodes.>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'), indent=4)) Expression( body=JoinedStr( values=[ Constant(value='sin('), FormattedValue( value=Name(id='a', ctx=Load()), conversion=-1), Constant(value=') is '), FormattedValue( value=Call( func=Name(id='sin', ctx=Load()), args=[ Name(id='a', ctx=Load())]), conversion=-1, format_spec=JoinedStr( values=[ Constant(value='.3')]))]))
- class ast.TemplateStr(values, /)¶
Added in version 3.14.
Node representing a template string literal, comprising a series of
InterpolationandConstantnodes. These nodes may be any order, and do not need to be interleaved.>>> expr = ast.parse('t"{name} finished {place:ordinal}"', mode='eval') >>> print(ast.dump(expr, indent=4)) Expression( body=TemplateStr( values=[ Interpolation( value=Name(id='name', ctx=Load()), str='name', conversion=-1), Constant(value=' finished '), Interpolation( value=Name(id='place', ctx=Load()), str='place', conversion=-1, format_spec=JoinedStr( values=[ Constant(value='ordinal')]))]))
- class ast.Interpolation(value, str, conversion, format_spec=None)¶
Added in version 3.14.
Node representing a single interpolation field in a template string literal.
valueis any expression node (such as a literal, a variable, or a function call). This has the same meaning asFormattedValue.value.stris a constant containing the text of the interpolation expression.If
stris set toNone, thenvalueis used to generate code when callingast.unparse(). This no longer guarantees that the generated code is identical to the original and is intended for code generation.conversionis an integer:-1: no conversion
97 (
ord('a')):!aASCIIconversion114 (
ord('r')):!rrepr()conversion115 (
ord('s')):!sstringconversion
This has the same meaning as
FormattedValue.conversion.format_specis aJoinedStrnode representing the formatting of the value, orNoneif no format was specified. Bothconversionandformat_speccan be set at the same time. This has the same meaning asFormattedValue.format_spec.
- class ast.List(elts, ctx)¶
- class ast.Tuple(elts, ctx)¶
A list or tuple.
eltsholds a list of nodes representing the elements.ctxisStoreif the container is an assignment target (i.e.(x,y)=something), andLoadotherwise.>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4)) Expression( body=List( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load())) >>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4)) Expression( body=Tuple( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))
- class ast.Set(elts)¶
A set.
eltsholds a list of nodes representing the set’s elements.>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4)) Expression( body=Set( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)]))
- class ast.Dict(keys, values)¶
A dictionary.
keysandvalueshold lists of nodes representing the keys and the values respectively, in matching order (what would be returned when callingdictionary.keys()anddictionary.values()).When doing dictionary unpacking using dictionary literals the expression to be expanded goes in the
valueslist, with aNoneat the corresponding position inkeys.>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4)) Expression( body=Dict( keys=[ Constant(value='a'), None], values=[ Constant(value=1), Name(id='d', ctx=Load())]))
Variables¶
- class ast.Name(id, ctx)¶
A variable name.
idholds the name as a string, andctxis one of the following types.
- class ast.Load¶
- class ast.Store¶
- class ast.Del¶
Variable references can be used to load the value of a variable, to assign a new value to it, or to delete it. Variable references are given a context to distinguish these cases.
>>> print(ast.dump(ast.parse('a'), indent=4)) Module( body=[ Expr( value=Name(id='a', ctx=Load()))]) >>> print(ast.dump(ast.parse('a = 1'), indent=4)) Module( body=[ Assign( targets=[ Name(id='a', ctx=Store())], value=Constant(value=1))]) >>> print(ast.dump(ast.parse('del a'), indent=4)) Module( body=[ Delete( targets=[ Name(id='a', ctx=Del())])])
- class ast.Starred(value, ctx)¶
A
*varvariable reference.valueholds the variable, typically aNamenode. This type must be used when building aCallnode with*args.>>> print(ast.dump(ast.parse('a, *b = it'), indent=4)) Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Starred( value=Name(id='b', ctx=Store()), ctx=Store())], ctx=Store())], value=Name(id='it', ctx=Load()))])
Expressions¶
- class ast.Expr(value)¶
When an expression, such as a function call, appears as a statement by itself with its return value not used or stored, it is wrapped in this container.
valueholds one of the other nodes in this section, aConstant, aName, aLambda, aYieldorYieldFromnode.>>> print(ast.dump(ast.parse('-a'), indent=4)) Module( body=[ Expr( value=UnaryOp( op=USub(), operand=Name(id='a', ctx=Load())))])
- class ast.UnaryOp(op, operand)¶
A unary operation.
opis the operator, andoperandany expression node.
- class ast.UAdd¶
- class ast.USub¶
- class ast.Not¶
- class ast.Invert¶
Unary operator tokens.
Notis thenotkeyword,Invertis the~operator.>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4)) Expression( body=UnaryOp( op=Not(), operand=Name(id='x', ctx=Load())))
- class ast.BinOp(left, op, right)¶
A binary operation (like addition or division).
opis the operator, andleftandrightare any expression nodes.>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4)) Expression( body=BinOp( left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load())))
- class ast.Add¶
- class ast.Sub¶
- class ast.Mult¶
- class ast.Div¶
- class ast.FloorDiv¶
- class ast.Mod¶
- class ast.Pow¶
- class ast.LShift¶
- class ast.RShift¶
- class ast.BitOr¶
- class ast.BitXor¶
- class ast.BitAnd¶
- class ast.MatMult¶
Binary operator tokens.
- class ast.BoolOp(op, values)¶
A boolean operation, ‘or’ or ‘and’.
opisOrorAnd.valuesare the values involved. Consecutive operations with the same operator, such asa or b or c, are collapsed into one node with several values.This doesn’t include
not, which is aUnaryOp.>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4)) Expression( body=BoolOp( op=Or(), values=[ Name(id='x', ctx=Load()), Name(id='y', ctx=Load())]))
- class ast.Compare(left, ops, comparators)¶
A comparison of two or more values.
leftis the first value in the comparison,opsthe list of operators, andcomparatorsthe list of values after the first element in the comparison.>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4)) Expression( body=Compare( left=Constant(value=1), ops=[ LtE(), Lt()], comparators=[ Name(id='a', ctx=Load()), Constant(value=10)]))
- class ast.Eq¶
- class ast.NotEq¶
- class ast.Lt¶
- class ast.LtE¶
- class ast.Gt¶
- class ast.GtE¶
- class ast.Is¶
- class ast.IsNot¶
- class ast.In¶
- class ast.NotIn¶
Comparison operator tokens.
- class ast.Call(func, args, keywords)¶
A function call.
funcis the function, which will often be aNameorAttributeobject. Of the arguments:argsholds a list of the arguments passed by position.keywordsholds a list ofkeywordobjects representing arguments passed by keyword.
The
argsandkeywordsarguments are optional and default to empty lists.>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4)) Expression( body=Call( func=Name(id='func', ctx=Load()), args=[ Name(id='a', ctx=Load()), Starred( value=Name(id='d', ctx=Load()), ctx=Load())], keywords=[ keyword( arg='b', value=Name(id='c', ctx=Load())), keyword( value=Name(id='e', ctx=Load()))]))
- class ast.keyword(arg, value)¶
A keyword argument to a function call or class definition.
argis a raw string of the parameter name,valueis a node to pass in.
- class ast.IfExp(test, body, orelse)¶
An expression such as
a if b else c. Each field holds a single node, so in the following example, all three areNamenodes.>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4)) Expression( body=IfExp( test=Name(id='b', ctx=Load()), body=Name(id='a', ctx=Load()), orelse=Name(id='c', ctx=Load())))
- class ast.Attribute(value, attr, ctx)¶
Attribute access, e.g.
d.keys.valueis a node, typically aName.attris a bare string giving the name of the attribute, andctxisLoad,StoreorDelaccording to how the attribute is acted on.>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4)) Expression( body=Attribute( value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load()))
- class ast.NamedExpr(target, value)¶
A named expression. This AST node is produced by the assignment expressions operator (also known as the walrus operator). As opposed to the
Assignnode in which the first argument can be multiple nodes, in this case bothtargetandvaluemust be single nodes.>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4)) Expression( body=NamedExpr( target=Name(id='x', ctx=Store()), value=Constant(value=4)))
Added in version 3.8.