Glossary¶
>>>
¶The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively in the interpreter.
...
¶Can refer to:
The default Python prompt of the interactive shell when entering the code for an indented code block, when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after specifying a decorator.
The three dots form of the Ellipsis object.
- abstract base class¶
Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques like
hasattr()
would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized byisinstance()
andissubclass()
; see theabc
module documentation. Python comes with many built-in ABCs for data structures (in thecollections.abc
module), numbers (in thenumbers
module), streams (in theio
module), import finders and loaders (in theimportlib.abc
module). You can create your own ABCs with theabc
module.- annotation¶
A label associated with a variable, a class attribute or a function parameter or return value, used by convention as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes, and functions are stored in the
__annotations__
special attribute of modules, classes, and functions, respectively.See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also see Annotations Best Practices for best practices on working with annotations.
- argument¶
A value passed to a function (or method) when calling the function. There are two kinds of argument:
keyword argument: an argument preceded by an identifier (e.g.
name=
) in a function call or passed as a value in a dictionary preceded by**
. For example,3
and5
are both keyword arguments in the following calls tocomplex()
:complex(real=3, imag=5) complex(**{'real': 3, 'imag': 5})
positional argument: an argument that is not a keyword argument. Positional arguments can appear at the beginning of an argument list and/or be passed as elements of an iterable preceded by
*
. For example,3
and5
are both positional arguments in the following calls:complex(3, 5) complex(*(3, 5))
Arguments are assigned to the named local variables in a function body. See the Calls section for the rules governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned to the local variable.
See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and PEP 362.
- asynchronous context manager¶
An object which controls the environment seen in an
async with
statement by defining__aenter__()
and__aexit__()
methods. Introduced by PEP 492.- asynchronous generator¶
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def
except that it containsyield
expressions for producing a series of values usable in anasync for
loop.Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
An asynchronous generator function may contain
await
expressions as well asasync for
, andasync with
statements.- asynchronous generator iterator¶
An object created by an asynchronous generator function.
This is an asynchronous iterator which when called using the
__anext__()
method returns an awaitable object which will execute the body of the asynchronous generator function until the nextyield
expression.Each
yield
temporarily suspends processing, remembering the execution state (including local variables and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable returned by__anext__()
, it picks up where it left off. See PEP 492 and PEP 525.- asynchronous iterable¶
An object, that can be used in an
async for
statement. Must return an asynchronous iterator from its__aiter__()
method. Introduced by PEP 492.- asynchronous iterator¶
An object that implements the
__aiter__()
and__anext__()
methods.__anext__()
must return an awaitable object.async for
resolves the awaitables returned by an asynchronous iterator’s__anext__()
method until it raises aStopAsyncIteration
exception. Introduced by PEP 492.- attribute¶
A value associated with an object which is usually referenced by name using dotted expressions. For example, if an object o has an attribute a it would be referenced as o.a.
It is possible to give an object an attribute whose name is not an identifier as defined by Identifiers and keywords, for example using
setattr()
, if the object allows it. Such an attribute will not be accessible using a dotted expression, and would instead need to be retrieved withgetattr()
.- awaitable¶
An object that can be used in an
await
expression. Can be a coroutine or an object with an__await__()
method. See also PEP 492.- BDFL¶
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
- binary file¶
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode (
'rb'
,'wb'
or'rb+'
),sys.stdin.buffer
,sys.stdout.buffer
, and instances ofio.BytesIO
andgzip.GzipFile
.See also text file for a file object able to read and write
str
objects.- borrowed reference¶
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection can remove the last strong reference to the object and so destroy it.
Calling
Py_INCREF()
on the borrowed reference is recommended to convert it to a strong reference in-place, except when the object cannot be destroyed before the last usage of the borrowed reference. ThePy_NewRef()
function can be used to create a new strong reference.- bytes-like object¶
An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes all
bytes
,bytearray
, andarray.array
objects, as well as many commonmemoryview
objects. Bytes-like objects can be used for various operations that work with binary data; these include compression, saving to a binary file, and sending over a socket.Some operations need the binary data to be mutable. The documentation often refers to these as “read-write bytes-like objects”. Example mutable buffer objects include
bytearray
and amemoryview
of abytearray
. Other operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”); examples of these includebytes
and amemoryview
of abytes
object.- bytecode¶
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython interpreter. The bytecode is also cached in
.pyc
files so that executing the same file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python releases.A list of bytecode instructions can be found in the documentation for the dis module.
- callable¶
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following syntax:
callable(argument1, argument2, argumentN)
A function, and by extension a method, is a callable. An instance of a class that implements the
__call__()
method is also a callable.- callback¶
A subroutine function which is passed as an argument to be executed at some point in the future.
- class¶
A template for creating user-defined objects. Class definitions normally contain method definitions which operate on instances of the class.
- class variable¶
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).
- closure variable¶
A free variable referenced from a nested scope that is defined in an outer scope rather than being resolved at runtime from the globals or builtin namespaces. May be explicitly defined with the
nonlocal
keyword to allow write access, or implicitly defined if the variable is only being read.For example, in the
inner
function in the following code, bothx
andprint
are free variables, but onlyx
is a closure variable:def outer(): x = 0 def inner(): nonlocal x x += 1 print(x) return inner
Due to the
codeobject.co_freevars
attribute (which, despite its name, only includes the names of closure variables rather than listing all referenced free variables), the more general free variable term is sometimes used even when the intended meaning is to refer specifically to closure variables.- complex number¶
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of
-1
), often writteni
in mathematics orj
in engineering. Python has built-in support for complex numbers, which are written with this latter notation; the imaginary part is written with aj
suffix, e.g.,3+1j
. To get access to complex equivalents of themath
module, usecmath
. Use of complex numbers is a fairly advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.- context¶
This term has different meanings depending on where and how it is used. Some common meanings:
The temporary state or environment established by a context manager via a
with
statement.The collection of keyvalue bindings associated with a particular
contextvars.Context
object and accessed viaContextVar
objects. Also see context variable.A
contextvars.Context
object. Also see current context.
- context management protocol¶
The
__enter__()
and__exit__()
methods called by thewith
statement. See PEP 343.- context manager¶
An object which implements the context management protocol and controls the environment seen in a
with
statement. See PEP 343.- context variable¶
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar
objects. Context variables are primarily used to isolate state between concurrent asynchronous tasks.- contiguous¶
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first index varies the fastest.
- coroutine¶
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented with the
async def
statement. See also PEP 492.- coroutine function¶
A function which returns a coroutine object. A coroutine function may be defined with the
async def
statement, and may containawait
,async for
, andasync with
keywords. These were introduced by PEP 492.- CPython¶
The canonical implementation of the Python programming language, as distributed on python.org. The term “CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.
- current context¶
The context (
contextvars.Context
object) that is currently used byContextVar
objects to access (get or set) the values of context variables. Each thread has its own current context. Frameworks for executing asynchronous tasks (seeasyncio
) associate each task with a context which becomes the current context whenever the task starts or resumes execution.- decorator¶
A function returning another function, usually applied as a function transformation using the
@wrapper
syntax. Common examples for decorators areclassmethod()
andstaticmethod()
.The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:
def f(arg): ... f = staticmethod(f) @staticmethod def f(arg): ...
The same concept exists for classes, but is less commonly used there. See the documentation for function definitions and class definitions for more about decorators.
- descriptor¶
Any object which defines the methods
__get__()
,__set__()
, or__delete__()
. When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because they are the basis for many features including functions, methods, properties, class methods, static methods, and reference to super classes.For more information about descriptors’ methods, see Implementing Descriptors or the Descriptor How To Guide.
- dictionary¶
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__()
and__eq__()
methods. Called a hash in Perl.- dictionary comprehension¶
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range(10)}
generates a dictionary containing keyn
mapped to valuen ** 2
. See Displays for lists, sets and dictionaries.- dictionary view¶
The objects returned from
dict.keys()
,dict.values()
, anddict.items()
are called dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to become a full list uselist(dictview)
. See Dictionary view objects.- docstring¶
A string literal which appears as the first expression in a class, function or module. While ignored when the suite is executed, it is recognized by the compiler and put into the
__doc__
attribute of the enclosing class, function or module. Since it is available via introspection, it is the canonical place for documentation of the object.- duck-typing¶
A programming style which does not look at an object’s type to determine if it has the right interface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using
type()
orisinstance()
. (Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employshasattr()
tests or EAFP programming.- dunder¶
An informal short-hand for “double underscore”, used when talking about a special method. For example,
__init__
is often pronounced “dunder init”.- EAFP¶
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized by the presence of many
try
andexcept
statements. The technique contrasts with the LBYL style common to many other languages such as C.- expression¶
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of expression elements like literals, names, attribute access, operators or function calls which all return a value. In contrast to many other languages, not all language constructs are expressions. There are also statements which cannot be used as expressions, such as
while
. Assignments are also statements, not expressions.- extension module¶
A module written in C or C++, using Python’s C API to interact with the core and with user code.
- f-string¶
String literals prefixed with
'f'
or'F'
are commonly called “f-strings” which is short for formatted string literals. See also PEP 498.- file object¶
An object exposing a file-oriented API (with methods such as
read()
orwrite()
) to an underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces are defined in the
io
module. The canonical way to create a file object is by using theopen()
function.- file-like object¶
A synonym for file object.
- filesystem encoding and error handler¶
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to the operating system.
The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding fails to provide this guarantee, API functions can raise
UnicodeError
.The
sys.getfilesystemencoding()
andsys.getfilesystemencodeerrors()
functions can be used to get the filesystem encoding and error handler.The filesystem encoding and error handler are configured at Python startup by the
PyConfig_Read()
function: seefilesystem_encoding
andfilesystem_errors
members ofPyConfig
.See also the locale encoding.
- finder¶
An object that tries to find the loader for a module that is being imported.
There are two types of finder: meta path finders for use with
sys.meta_path
, and path entry finders for use withsys.path_hooks
.See Finders and loaders and
importlib
for much more detail.- floor division¶
Mathematical division that rounds down to nearest integer. The floor division operator is
//
. For example, the expression11 // 4
evaluates to2
in contrast to the2.75
returned by float true division. Note that(-11) // 4
is-3
because that is-2.75
rounded downward. See PEP 238.- free threading¶
A threading model where multiple threads can run Python bytecode simultaneously within the same interpreter. This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a time. See PEP 703.
- free variable¶
Formally, as defined in the language execution model, a free variable is any variable used in a namespace which is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the name of the
codeobject.co_freevars
attribute, the term is also sometimes used as a synonym for closure variable.- function¶
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which may be used in the execution of the body. See also parameter, method, and the Function definitions section.
- function annotation¶
An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two
int
arguments and is also expected to have anint
return value:def sum_two_numbers(a: int, b: int) -> int: return a + b
Function annotation syntax is explained in section Function definitions.
See variable annotation and PEP 484, which describe this functionality. Also see Annotations Best Practices for best practices on working with annotations.
- __future__¶
A future statement,
from __future__ import <feature>
, directs the compiler to compile the current module using syntax or semantics that will become standard in a future release of Python. The__future__
module documents the possible values of feature. By importing this module and evaluating its variables, you can see when a new feature was first added to the language and when it will (or did) become the default:>>> import __future__ >>> __future__.division _Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)
- garbage collection¶
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector can be controlled using the
gc
module.- generator¶
A function which returns a generator iterator. It looks like a normal function except that it contains
yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with thenext()
function.Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
- generator iterator¶
An object created by a generator function.
Each
yield
temporarily suspends processing, remembering the execution state (including local variables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to functions which start fresh on every invocation).- generator expression¶
An expression that returns an iterator. It looks like a normal expression followed by a
for
clause defining a loop variable, range, and an optionalif
clause. The combined expression generates values for an enclosing function:>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81 285
- generic function¶
A function composed of multiple functions implementing the same operation for different types. Which implementation should be used during a call is determined by the dispatch algorithm.
See also the single dispatch glossary entry, the
functools.singledispatch()
decorator, and PEP 443.- generic type¶
A type that can be parameterized; typically a container class such as
list
ordict
. Used for