- 1.70.0 (latest)
- 1.69.0
- 1.68.0
- 1.67.0
- 1.66.2
- 1.65.0
- 1.64.0
- 1.63.1
- 1.62.0
- 1.61.0
- 1.60.0
- 1.59.1
- 1.58.0
- 1.57.1
- 1.54.0
- 1.53.0
- 1.52.0
- 1.51.2
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.42.0
- 1.41.0
- 1.40.0
- 1.39.0
- 1.38.0
- 1.37.0
- 1.36.0
- 1.35.0
- 1.34.1
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.2
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.23.0
- 1.22.0
- 1.21.0
- 1.20.1
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
Package bigquery provides a client for the BigQuery service.
The following assumes a basic familiarity with BigQuery concepts. See https://cloud.google.com/bigquery/docs.
See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package.
Creating a Client
To start working with this package, create a client with NewClient:
ctx := context.Background() client, err := bigquery.NewClient(ctx, projectID) if err != nil { // TODO: Handle error. }
Querying
To query existing tables, create a Client.Query and call its Query.Read method, which starts the query and waits for it to complete:
q := client.Query(` SELECT year, SUM(number) as num FROM bigquery-public-data.usa_names.usa_1910_2013 WHERE name = @name GROUP BY year ORDER BY year `) q.Parameters = []bigquery.QueryParameter{ {Name: "name", Value: "William"}, } it, err := q.Read(ctx) if err != nil { // TODO: Handle error. }
Then iterate through the resulting rows. You can store a row using anything that implements the ValueLoader interface, or with a slice or map of Value. A slice is simplest:
for { var values []bigquery.Value err := it.Next(&values) if err == iterator.Done { break } if err != nil { // TODO: Handle error. } fmt.Println(values) }
You can also use a struct whose exported fields match the query:
type Count struct { Year int Num int } for { var c Count err := it.Next(&c) if err == iterator.Done { break } if err != nil { // TODO: Handle error. } fmt.Println(c) }
You can also start the query running and get the results later. Create the query as above, but call Query.Run instead of Query.Read. This returns a Job, which represents an asynchronous operation.
job, err := q.Run(ctx) if err != nil { // TODO: Handle error. }
Get the job's ID, a printable string. You can save this string to retrieve the results at a later time, even in another process.
jobID := job.ID() fmt.Printf("The job ID is %s\n", jobID)
To retrieve the job's results from the ID, first look up the Job with the Client.JobFromID method:
job, err = client.JobFromID(ctx, jobID) if err != nil { // TODO: Handle error. }
Use the Job.Read method to obtain an iterator, and loop over the rows. Calling Query.Read is preferred for queries with a relatively small result set, as it will call BigQuery jobs.query API for a optimized query path. If the query doesn't meet that criteria, the method will just combine Query.Run and Job.Read.
it, err = job.Read(ctx) if err != nil { // TODO: Handle error. } // Proceed with iteration as above.
Datasets and Tables
You can refer to datasets in the client's project with the Client.Dataset method, and in other projects with the Client.DatasetInProject method:
myDataset := client.Dataset("my_dataset") yourDataset := client.DatasetInProject("your-project-id", "your_dataset")
These methods create references to datasets, not the datasets themselves. You can have a dataset reference even if the dataset doesn't exist yet. Use