A Google Cloud customer since 2016, The Home Depot manages data and empowers its associates with Google Cloud, keeping 50,000+ items stocked in store at over 2,000 locations, monitoring online applications, or offering relevant call center information.
The Home Depot (THD) is the world’s largest home-improvement chain, growing to more than 2,200 stores and 700,000 products in four decades. Much of that success was driven through the analysis of data. This included developing sales forecasts, replenishing inventory through the supply chain network, and providing timely performance scorecards.
However, to compete in today's business world, THD has taken this data-driven approach to an entirely new level of success on Google Cloud, providing capabilities not practical on legacy technologies.
The pressures of contemporary growth that drove much of the work are familiar to many businesses. In addition to everything it was doing, THD needed to better integrate the complexities in its related businesses, like tool rental and home services. It needed to better empower teams, including a fast-growing data analysis staff and store associates with mobile computing devices. It wanted to better use online commerce and artificial intelligence to meet customer needs, while maintaining better security.
Even before addressing these new challenges, THD’s existing on-premises data warehouse was under stress as more data was required for analytics and data analysts were utilizing the data with increasingly complex use cases. This drove rapid growth of the data warehouse, but also created constant challenges for the team in managing priorities, performance, and cost.
In order to add capacity to the environment, it was a major planning, architecture, and testing effort. In one case, adding on-premises capacity took six months of planning and a three-day service outage. Within a year, capacity was again scarce, impacting performance and ability to execute all the reporting and analytics workloads required. The capacity refresh cycles were shrinking, and the expecations for data were growing. There had to be a better way.
Still, THD did not take its move to the cloud lightly. A large-scale enterprise data warehouse migration involves tremendous effort among people, process, and technology. After careful consideration, THD chose Google Cloud’s BigQuery for its cloud enterprise data warehouse.
BigQuery, a scalable serverless data warehouse, was better on cost, infrastructure agility, and analytics capability, driving better insights with improved performance. There are no service interruptions when capacity is added, and that capacity can be added within a week (and soon same day). It doesn't require complex system administration, and its standard SQL support means people can easily ramp up quickly. Valuable BigQuery products like Identity and Access Management meant THD could create many separate Google Cloud projects, while ensuring that different teams weren’t interfering with each other or accessing protected data.
THD also utilizes BigQuery's flat-rate monthly pricing model that allows teams to budget their capacity based on need and provides billing predictability. The capacity not being used by a given project is available for enterprise use. This ensures no surprises when the monthly bill arrives and provides all analytical users access to significant computing power.
While THD’s legacy data warehouse contained 450 terabytes of data, the BigQuery enterprise data warehouse has over 15 petabytes. That means better decision-making by utilizing new datasets like website clickstream data and by analyzing additional years of data.
As for performance, look at this chart:
Percent reduction in time that specific workloads took using BigQuery versus on-premises data warehousing.
With the cloud EDW migration complete, and the legacy on-premises data warehouse retired, analysts now execute more complex and demanding workloads that they would not have been able to complete before, such as utilizing Datalab for orchestrating analytics through Python Notebooks, utilizing BigQuery ML for machine learning directly against the BigQuery data (no movement of large datasets), and AutoML to help determine the best model for predictions.
Additionally, engineers at THD have adapted BigQuery to monitor, analyze, and act on application performance data across all its stores and warehouses in real time, something that was not practical in the on-premises system.
With over 600 projects that THD now has on Google Cloud, the BigQuery story is just one of the many ways that Google Cloud is working with THD to deliver meaningful business results, every day.
A Google Cloud customer since 2016, The Home Depot manages data and empowers its associates with Google Cloud, keeping 50,000+ items stocked in store at over 2,000 locations, monitoring online applications, or offering relevant call center information.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],[],[[["\u003cp\u003eThe Home Depot (THD) successfully migrated from a stressed on-premises data warehouse to Google Cloud's BigQuery, significantly improving cost, agility, and analytics capabilities.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery's serverless architecture allows THD to add capacity within a week without service interruptions, in contrast to the previous six-month planning cycles and outages required on-premises.\u003c/p\u003e\n"],["\u003cp\u003eTHD has expanded its data warehouse from 450 terabytes on-premises to over 15 petabytes on BigQuery, enabling better decision-making through analysis of more extensive datasets.\u003c/p\u003e\n"],["\u003cp\u003eUsing BigQuery, THD analysts now execute complex workloads, utilize machine learning directly against data, and monitor application performance data in real-time, capabilities that were not feasible before.\u003c/p\u003e\n"],["\u003cp\u003eTHD leverages Google Cloud's products like Identity and Access Management, Datalab, BigQuery ML, and AutoML, and has over 600 projects on the platform, leading to meaningful business outcomes.\u003c/p\u003e\n"]]],[],null,["The Home Depot: Helping doers get more done through a data-driven approach \n[Learn more about this customer's story](https://cloud.google.com/customers/featured/the-home-depot/)\n\nAbout The Home Depot\n\n\nA Google Cloud customer since 2016, The Home Depot manages data and empowers its associates with Google Cloud, keeping 50,000+ items stocked in store at over 2,000 locations, monitoring online applications, or offering relevant call center information. \nIndustries: Retail \\& Consumer Goods \nLocation: United States \nProducts: [Google Cloud](https://cloud.google.com/), [BigQuery](https://cloud.google.com/bigquery/) \n\nTell us your challenge. We're here to help.[Contact us](/contact)\n[The Home Depot](https://www.homedepot.com/) (THD) is the world's largest home-improvement chain, growing to more than 2,200 stores and 700,000 products in four decades. Much of that success was driven through the analysis of data. This included developing sales forecasts, replenishing inventory through the supply chain network, and providing timely performance scorecards.\n\n\nHowever, to compete in today's business world, THD has taken this data-driven approach to an entirely new level of success on [Google Cloud](https://cloud.google.com/), providing capabilities not practical on legacy technologies.\n\n\nThe pressures of contemporary growth that drove much of the work are familiar to many businesses. In addition to everything it was doing, THD needed to better integrate the complexities in its related businesses, like tool rental and home services. It needed to better empower teams, including a fast-growing data analysis staff and store associates with mobile computing devices. It wanted to better use online commerce and artificial intelligence to meet customer needs, while maintaining better security.\n\n\nEven before addressing these new challenges, THD's existing on-premises data warehouse was under stress as more data was required for analytics and data analysts were utilizing the data with increasingly complex use cases. This drove rapid growth of the data warehouse, but also created constant challenges for the team in managing priorities, performance, and cost.\n\n\nIn order to add capacity to the environment, it was a major planning, architecture, and testing effort. In one case, adding on-premises capacity took six months of planning and a three-day service outage. Within a year, capacity was again scarce, impacting performance and ability to execute all the reporting and analytics workloads required. The capacity refresh cycles were shrinking, and the expecations for data were growing. There had to be a better way.\n\n\nStill, THD did not take its move to the cloud lightly. A large-scale enterprise data warehouse migration involves tremendous effort among people, process, and technology. After careful consideration, THD chose Google Cloud's [BigQuery](/bigquery) for its cloud enterprise data warehouse.\n\n\nBigQuery, a scalable serverless data warehouse, was better on cost, infrastructure agility, and analytics capability, driving better insights with improved performance. There are no service interruptions when capacity is added, and that capacity can be added within a week (and soon same day). It doesn't require complex system administration, and its standard SQL support means people can easily ramp up quickly. Valuable BigQuery products like [Identity and Access Management](/iam) meant THD could create many separate Google Cloud projects, while ensuring that different teams weren't interfering with each other or accessing protected data.\n\n\nTHD also utilizes BigQuery's flat-rate monthly pricing model that allows teams to budget their capacity based on need and provides billing predictability. The capacity not being used by a given project is available for enterprise use. This ensures no surprises when the monthly bill arrives and provides all analytical users access to significant computing power.\n\n\nWhile THD's legacy data warehouse contained 450 terabytes of data, the BigQuery enterprise data warehouse has over 15 petabytes. That means better decision-making by utilizing new datasets like website clickstream data and by analyzing additional years of data.\n\n\nAs for performance, look at this chart:\nPercent reduction in time that specific workloads took using BigQuery versus on-premises data warehousing. \n\nWith the cloud EDW migration complete, and the legacy on-premises data warehouse retired, analysts now execute more complex and demanding workloads that they would not have been able to complete before, such as utilizing [Datalab](/datalab) for orchestrating analytics through Python Notebooks, utilizing BigQuery ML for machine learning directly against the BigQuery data (no movement of large datasets), and [AutoML](/automl) to help determine the best model for predictions. \n\n\u003cbr /\u003e\n\n\nAdditionally, engineers at THD have adapted BigQuery to monitor, analyze, and act on application performance data across all its stores and warehouses in real time, something that was not practical in the on-premises system.\n\n\nWith over 600 projects that THD now has on Google Cloud, the BigQuery story is just one of the many ways that Google Cloud is working with THD to deliver meaningful business results, every day.\n\nTell us your challenge. We're here to help.[Contact us](/contact) \n[Learn more about this customer's story](https://cloud.google.com/customers/featured/the-home-depot/)\n\nAbout The Home Depot\n\n\nA Google Cloud customer since 2016, The Home Depot manages data and empowers its associates with Google Cloud, keeping 50,000+ items stocked in store at over 2,000 locations, monitoring online applications, or offering relevant call center information. \nIndustries: Retail \\& Consumer Goods \nLocation: United States \n[Google Cloud](https://cloud.google.com/) [BigQuery](https://cloud.google.com/bigquery/)\n\nLearn More\n\n- [Reach out to our team to see how Google Cloud can help your business.](https://cloud.google.com/contact)"]]