Skip to main content
Google Cloud
Documentation Technology areas
  • AI and ML
  • Application development
  • Application hosting
  • Compute
  • Data analytics and pipelines
  • Databases
  • Distributed, hybrid, and multicloud
  • Generative AI
  • Industry solutions
  • Networking
  • Observability and monitoring
  • Security
  • Storage
Cross-product tools
  • Access and resources management
  • Costs and usage management
  • Google Cloud SDK, languages, frameworks, and tools
  • Infrastructure as code
  • Migration
Related sites
  • Google Cloud Home
  • Free Trial and Free Tier
  • Architecture Center
  • Blog
  • Contact Sales
  • Google Cloud Developer Center
  • Google Developer Center
  • Google Cloud Marketplace
  • Google Cloud Marketplace Documentation
  • Google Cloud Skills Boost
  • Google Cloud Solution Center
  • Google Cloud Support
  • Google Cloud Tech Youtube Channel
/
  • English
  • Deutsch
  • Español – América Latina
  • Français
  • Indonesia
  • Italiano
  • Português – Brasil
  • 中文 – 简体
  • 中文 – 繁體
  • 日本語
  • 한국어
Console Sign in
  • BigQuery
Guides Reference Samples Resources
Contact Us Start free
Google Cloud
  • Documentation
    • Guides
    • Reference
    • Samples
    • Resources
  • Technology areas
    • More
  • Cross-product tools
    • More
  • Related sites
    • More
  • Console
  • Contact Us
  • Start free
  • Discover
  • Product overview
  • Get started
  • Use the BigQuery sandbox
  • Try the console
    • Query and visualize data
    • Load and query data
    • Try DataFrames
  • Try the command-line tool
    • Load and query data
  • Try the client libraries
  • Explore BigQuery tools
    • Explore the console
    • Explore the command-line tool
  • Migrate
  • Overview
  • Migrate a data warehouse
    • Introduction to BigQuery Migration Service
    • Migration assessment
    • Migrate schema and data
    • Migrate data pipelines
    • Migrate SQL
      • Translate SQL queries interactively
      • Translate SQL queries using the API
      • Translate SQL queries in batch
      • Generate metadata for translation and assessment
      • Transform SQL translations with YAML
      • Map SQL object names for batch translation
  • Migration guides
    • Amazon Redshift
      • Migration overview
      • Migrate Amazon Redshift schema and data
      • Migrate Amazon Redshift schema and data when using a VPC
      • SQL translation reference
    • Apache Hadoop
      • Extract metadata from Hadoop for migration
      • Migrate permissions from Hadoop
      • Schedule an HDFS data lake transfer
    • Apache Hive
      • Hive migration overview
      • Migrate Apache Hive schema and data
      • SQL translation reference
    • IBM Netezza
      • Migrate from IBM Netezza
      • SQL translation reference
    • Oracle
      • Migration guide
      • SQL translation reference
    • Snowflake
      • Introduction
      • Schedule a Snowflake transfer
      • Migration overview
      • SQL translation reference
    • Teradata
      • Introduction
      • Migration overview
      • Migrate Teradata schema and data
      • Migration tutorial
      • SQL translation reference
  • Design
  • Organize resources
  • API dependencies
  • Understand editions
  • Datasets
    • Introduction
    • Create datasets
    • List datasets
    • Cross-region replication
    • Managed disaster recovery
    • Migrate to managed disaster recovery
    • Dataset data retention
  • Tables
    • BigQuery tables
      • Introduction
      • Create and use tables
      • BigLake Iceberg tables in BigQuery
      • Specify table schemas
        • Specify a schema
        • Specify nested and repeated columns
        • Specify default column values
        • Specify ObjectRef values
      • Segment with partitioned tables
        • Introduction
        • Create partitioned tables
        • Manage partitioned tables
        • Query partitioned tables
      • Optimize with clustered tables
        • Introduction
        • Create clustered tables
        • Manage clustered tables
        • Query clustered tables
      • Use metadata indexing
    • External tables
      • Introduction
      • Types of external tables
        • BigLake external tables
        • BigQuery Omni
        • Object tables
        • External tables
      • External table definition file
      • Externally partitioned data
      • Use metadata caching
      • Amazon S3 BigLake external tables
      • Apache Iceberg external tables
      • Azure Blob Storage BigLake tables
      • Bigtable external table
      • BigLake external tables for Cloud Storage
      • Cloud Storage object tables
      • Cloud Storage external tables
      • Delta Lake BigLake tables
      • Google Drive external tables
  • Views
    • Logical views
      • Introduction
      • Create logical views
    • Materialized views
      • Introduction
      • Create materialized views
    • Manage all view types
      • Get information about views
      • Manage views
  • Routines
    • Introduction
    • Manage routines
    • User-defined functions
    • User-defined functions in Python
    • User-defined aggregate functions
    • Table functions
    • Remote functions
    • SQL stored procedures
    • Stored procedures for Apache Spark
    • Analyze object tables by using remote functions
    • Remote functions and Translation API tutorial
  • Connections
    • Introduction
    • Amazon S3 connection
    • Apache Spark connection
    • Azure Blob Storage connection
    • Cloud resource connection
    • Spanner connection
    • Cloud SQL connection
    • AlloyDB connection
    • SAP Datasphere connection
    • Manage connections
    • Configure connections with network attachments
    • Default connections
  • Indexes
    • Search indexes
      • Introduction
      • Manage search indexes
    • Vector indexes
      • Introduction
      • Manage vector indexes
  • Load, transform, and export
  • Introduction
  • Load data
    • Introduction
    • Storage overview
    • BigQuery Data Transfer Service
      • Introduction
      • Data location and transfers
      • Authorize transfers
      • Enable transfers
      • Set up network connections
        • Cloud SQL instance access
        • AWS VPN and network attachment
        • Azure VPN and network attachment
      • Manage transfers
      • Transfer run notifications
      • Troubleshoot transfer configurations
      • Use service accounts
      • Use third-party transfers
      • Use custom organization policies
      • Data source change log
      • Event-driven transfers
      • Transfer guides
        • Amazon S3
          • Introduction
          • Schedule transfers
          • Transfer runtime parameters
        • Azure Blob Storage
          • Introduction
          • Schedule transfers
          • Transfer runtime parameters
        • Campaign Manager
          • Schedule transfers
          • Report transformation
        • Cloud Storage
          • Introduction
          • Schedule transfers
          • Transfer runtime parameters
        • Comparison Shopping Service Center
          • Introduction
          • Schedule transfers
          • Transfer report schema
        • Display & Video 360
          • Schedule transfers
          • Report transformation
        • Facebook Ads
          • Schedule transfers
          • Report transformation
        • Google Ad Manager
          • Schedule transfers
          • Report transformation
        • Google Ads
          • Schedule transfers
          • Report transformation
        • Google Analytics 4
          • Schedule transfers
          • Report transformation
        • Google Merchant Center
          • Introduction
          • Schedule transfers
          • Query your data
          • Migration guides
            • Best sellers
            • Price competitiveness
          • Transfer report schema
            • Best Sellers table
            • Local Inventories table
            • Performance table
            • Price Benchmarks table
            • Price Competitiveness table
            • Price Insights table
            • Product Inventory table
            • Product Targeting table
            • Products table
            • Regional Inventories table
            • Top Brands table
            • Top Products table
        • Google Play
          • Schedule transfers
          • Transfer report transformation
        • MySQL
          • Schedule transfers
        • Oracle
          • Schedule transfers
        • PostgreSQL
          • Schedule transfers
        • Salesforce
          • Schedule transfers
        • Salesforce Marketing Cloud
          • Schedule transfers
        • Search Ads 360
          • Schedule transfers
          • Transfer report transformation
          • Migration guide
        • ServiceNow
          • Schedule transfers
        • YouTube channel
          • Schedule transfers
          • Transfer report transformation
        • YouTube content owner
          • Schedule transfers
          • Transfer report transformation
    • Batch load data
      • Introduction
      • Auto-detect schemas
      • Load Avro data
      • Load Parquet data
      • Load ORC data
      • Load CSV data
      • Load JSON data
      • Load externally partitioned data
      • Load data from a Datastore export
      • Load data from a Firestore export
      • Load data using the Storage Write API
      • Load data into partitioned tables
    • Write and read data with the Storage API
      • Read data with the Storage Read API
      • Write data with the Storage Write API
        • Introduction
        • Stream data with the Storage Write API
        • Batch load data with the Storage Write API
        • Best practices
        • Supported protocol buffer and Arrow data types
        • Stream updates with change data capture
        • Use the legacy streaming API
    • Load data from other Google services
    • Discover and catalog Cloud Storage data
    • Load data using third-party apps
    • Load data using cross-cloud operations
  • Transform data
    • Introduction
    • Prepare data
      • Introduction
      • Prepare data with Gemini
    • Transform with DML
    • Transform data in partitioned tables
    • Work with change history
    • Transform data with pipelines
      • Introduction
      • Create pipelines
  • Export data
    • Introduction
    • Export query results
    • Export to Cloud Storage
    • Export to Bigtable
    • Export to Spanner
    • Export to Pub/Sub
    • Export as Protobuf columns
  • Analyze
  • Introduction
  • Search for resources
  • Explore your data
    • Create queries with table explorer
    • Profile your data
    • Generate data insights
    • Analyze with a data canvas
    • Analyze data with Gemini
  • Query BigQuery data
    • Run a query
    • Write queries with Gemini
    • Write query results
    • Query data with SQL
      • Introduction
      • Arrays
      • JSON data
      • Multi-statement queries
      • Parameterized queries
      • Pipe syntax
      • Analyze data using pipe syntax
      • Recursive CTEs
      • Sketches
      • Table sampling
      • Time series
      • Transactions
      • Wildcard tables
    • Use geospatial analytics
      • Introduction
      • Work with geospatial analytics
      • Work with raster data
      • Best practices for spatial analysis
      • Visualize geospatial data
      • Grid systems for spatial analysis
      • Geospatial analytics syntax reference
      • Geospatial analytics tutorials
        • Get started with geospatial analytics
        • Use geospatial analytics to plot a hurricane's path
        • Visualize geospatial analytics data in a Colab notebook
        • Use raster data to analyze temperature
    • Search data
      • Search indexed data
      • Work with text analyzers
    • Access historical data
  • Work with queries
    • Save queries
      • Introduction
      • Create saved queries
    • Continuous queries
      • Introduction
      • Create continuous queries
    • Use cached results
    • Use sessions
      • Introduction
      • Work with sessions
      • Write queries in sessions
    • Troubleshoot queries
    • Optimize queries
      • Introduction
      • Use the query plan explanation
      • Get query performance insights
      • Optimize query computation
      • Use history-based optimizations
      • Optimize storage for query performance
      • Use materialized views
      • Use BI Engine
      • Use nested and repeated data
      • Optimize functions
      • Use the advanced runtime
      • Use primary and foreign keys
  • Analyze multimodal data
    • Introduction
    • Analyze multimodal data with SQL and Python UDFs
    • Analyze multimodal data with BigQuery DataFrames
  • Query external data sources
    • Manage open source metadata with BigLake metastore
      • Introduction
      • Use with tables in BigQuery
      • Use with Dataproc
      • Use with Serverless for Apache Spark
      • Use with Spark stored procedures
      • Manage metastore resources
      • Create and query tables from Spark
      • Customize with additional features
      • Use with the Iceberg REST catalog
    • Optimal data and metadata formats for lakehouses
    • Use external tables and datasets
      • Amazon S3 data
        • Query Amazon S3 data
        • Export query results to Amazon S3
      • Query Apache Iceberg data
      • Query open table formats with manifests
      • Azure Blob Storage data
        • Query Azure Blob Storage data
        • Export query results to Azure Blob Storage
      • Query Cloud Bigtable data
      • Cloud Storage data
        • Query Cloud Storage data in BigLake tables
        • Query Cloud Storage data in external tables
      • Work with Salesforce Data Cloud data
      • Query Google Drive data
      • Create AWS Glue federated datasets
      • Create Spanner external datasets
    • Run federated queries
      • Federated queries
      • Query SAP Datasphere data
      • Query AlloyDB data
      • Query Spanner data
      • Query Cloud SQL data
  • Use notebooks
    • Introduction
    • Use Colab notebooks
      • Introduction
      • Create notebooks
      • Explore query results
      • Use Spark
      • Use Colab Data Science Agent
    • Use DataFrames
      • Introduction
      • Use DataFrames
      • Use the data type system
      • Manage sessions and I/O
      • Visualize graphs
      • Use DataFrames in dbt
      • Optimize performance
    • Use Jupyter notebooks
      • Use the BigQuery JupyterLab plugin
  • Use analysis and BI tools
    • Introduction
    • Use Connected Sheets
    • Use Tableau Desktop
    • Use Looker
    • Use Looker Studio
    • Use third-party tools
    • Google Cloud Ready - BigQuery
      • Overview
      • Partners
  • AI and machine learning
  • Introduction
  • Generative AI and pretrained models
    • End-to-end user journeys for generative AI models
    • Generative AI
      • Overview
      • Built-in models
        • The TimesFM time series forecasting model
      • Tutorials
        • Generate text
          • Generate text using public data and Gemini
          • Generate text using public data and Gemma
          • Generate text using your data
          • Handle quota errors by calling ML.GENERATE_TEXT iteratively
          • Analyze images with a Gemini model
          • Tune text generation models
            • Tune a model using your data
            • Use tuning and evaluation to improve model performance
        • Generate structured data
          • Generate structured data
        • Generate embeddings
          • Generate text embeddings using an LLM
          • Generate text embeddings using an open model
          • Generate image embeddings using an LLM
          • Generate video embeddings using an LLM
          • Handle quota errors by calling ML.GENERATE_EMBEDDING iteratively
          • Generate and search multimodal embeddings
          • Generate text embeddings using pretrained TensorFlow models
        • Vector search
          • Search embeddings with vector search
          • Perform semantic search and retrieval-augmented generation
    • Task-specific solutions
      • Overview
      • Tutorials
        • Natural language processing
          • Understand text
          • Translate text
        • Document processing
          • Process documents
          • Parse PDFs in a retrieval-augmented generation pipeline
        • Speech recognition
          • Transcribe audio files
        • Computer vision
          • Annotate images
          • Run inference on image data
          • Analyze images with an imported classification model
          • Analyze images with an imported feature vector model
    • Choose generative AI and task-specific functions
      • Choose a natural language processing function
      • Choose a document processing function
      • Choose a transcription function
  • Machine learning
    • End-to-end user journeys for ML models
    • End-to-end user journeys for imported models
    • ML models and MLOps
      • Model creation
      • Feature engineering and management
        • Feature preprocessing overview
        • Supported input feature types
        • Automatic preprocessing
        • Manual preprocessing
        • Feature serving
        • Perform feature engineering with the TRANSFORM clause
      • Hyperparameter tuning overview
      • Model evaluation overview
      • Model inference overview
      • Explainable AI overview
      • Model weights overview
      • ML pipelines overview
      • Model monitoring overview
      • Manage BigQueryML models in Vertex AI
    • Use cases
      • Classification
      • Regression
      • Dimensionality reduction
      • Clustering
      • Recommendation
      • Anomaly detection
    • Tutorials
      • Getting started
        • Get started with BigQuery ML using SQL
        • Get started with BigQuery ML using the Cloud console
      • Regression and classification
        • Create a linear regression model
        • Create a logistic regression classification model
        • Create a boosted trees classification model
      • Clustering
        • Cluster data with a k-means model
      • Recommendation
        • Create recommendations based on explicit feedback with a matrix factorization model
        • Create recommendations based on implicit feedback with a matrix factorization model
      • Anomaly detection
        • Anomaly detection with a multivariate time series
      • Imported and remote models
        • Make predictions with imported TensorFlow models
        • Make predictions with scikit-learn models in ONNX format
        • Make predictions with PyTorch models in ONNX format
        • Make predictions with remote models on Vertex AI
      • Hyperparameter tuning
        • Improve model performance with hyperparameter tuning
      • Export models
        • Export a BigQuery ML model for online prediction
  • Time series
    • Overview
    • End-to-end user journeys for forecasting models
    • Tutorials
      • Forecast a single time series with an ARIMA_PLUS univariate model
      • Forecast multiple time series with an ARIMA_PLUS univariate model
      • Forecast time series with a TimesFM univariate model
      • Scale an ARIMA_PLUS univariate model to millions of time series
      • Forecast a single time series with a multivariate model
      • Forecast multiple time series with a multivariate model
      • Use custom holidays with an ARIMA_PLUS univariate model
      • Limit forecasted values for an ARIMA_PLUS univariate model
      • Forecast hierarchical time series with an ARIMA_PLUS univariate model
  • Augmented analytics
    • Contribution analysis
    • Tutorials
      • Get data insights from contribution analysis using a summable metric
      • Get data insights from contribution analysis using a summable ratio metric
  • Work with models
    • List models
    • Manage models
    • Get model metadata
    • Update model metadata
    • Export models
    • Delete models
  • Reference patterns
  • Administer
  • Introduction
  • Manage resources
    • Organize resources
    • Understand reliability
    • Manage code assets
      • Manage data preparations
      • Manage notebooks
      • Manage saved queries
      • Manage pipelines
    • Manage tables
      • Manage tables
      • Manage table data
      • Modify table schemas
      • Restore deleted tables
    • Manage table clones
      • Introduction
      • Create table clones
    • Manage table snapshots
      • Introduction
      • Create table snapshots
      • Restore table snapshots
      • List table snapshots
      • View table snapshot metadata
      • Update table snapshot metadata
      • Delete table snapshots
      • Create periodic table snapshots
    • Manage configuration settings
    • Manage datasets
      • Manage datasets
      • Update dataset properties
      • Restore deleted datasets
    • Manage materialized views
    • Manage materialized view replicas
  • Schedule resources
    • Introduction
    • Schedule code assets