Ecma International Logo.

Standard ECMA-262

5.1 Edition / June 2011

ECMAScript® Language Specification

This is the HTML rendering of Ecma-262 Edition 5.1, The ECMAScript Language Specification.

The PDF rendering of this document is located at https://ecma-international.org/wp-content/uploads/ECMA-262_5.1_edition_june_2011.pdf.

The PDF version is the definitive specification. Any discrepancies between this HTML version and the PDF version are unintentional.

Copyright notice

Copyright © 2011 Ecma International

This document and possible translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to Ecma International, except as needed for the purpose of developing any document or deliverable produced by Ecma International (in which case the rules applied to copyrights must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Software License

All Software contained in this document ("Software)" is protected by copyright and is being made available under the "BSD License", included below. This Software may be subject to third party rights (rights from parties other than Ecma International), including patent rights, and no licenses under such third party rights are granted under this license even if the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT MATTERS AVAILABLE AT http://www.ecma-international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS*.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

  1. Copyright notice
  2. Introduction
  3. 1 Scope
  4. 2 Conformance
  5. 3 Normative references
  6. 4 Overview
    1. 4.1 Web Scripting
    2. 4.2 Language Overview
      1. 4.2.1 Objects
      2. 4.2.2 The Strict Variant of ECMAScript
    3. 4.3 Terms and definitions
      1. 4.3.1 type
      2. 4.3.2 primitive value
      3. 4.3.3 object
      4. 4.3.4 constructor
      5. 4.3.5 prototype
      6. 4.3.6 native object
      7. 4.3.7 built-in object
      8. 4.3.8 host object
      9. 4.3.9 undefined value
      10. 4.3.10 Undefined type
      11. 4.3.11 null value
      12. 4.3.12 Null type
      13. 4.3.13 Boolean value
      14. 4.3.14 Boolean type
      15. 4.3.15 Boolean object
      16. 4.3.16 String value
      17. 4.3.17 String type
      18. 4.3.18 String object
      19. 4.3.19 Number value
      20. 4.3.20 Number type
      21. 4.3.21 Number object
      22. 4.3.22 Infinity
      23. 4.3.23 NaN
      24. 4.3.24 function
      25. 4.3.25 built-in function
      26. 4.3.26 property
      27. 4.3.27 method
      28. 4.3.28 built-in method
      29. 4.3.29 attribute
      30. 4.3.30 own property
      31. 4.3.31 inherited property
  7. 5 Notational Conventions
    1. 5.1 Syntactic and Lexical Grammars
      1. 5.1.1 Context-Free Grammars
      2. 5.1.2 The Lexical and RegExp Grammars
      3. 5.1.3 The Numeric String Grammar
      4. 5.1.4 The Syntactic Grammar
      5. 5.1.5 The JSON Grammar
      6. 5.1.6 Grammar Notation
    2. 5.2 Algorithm Conventions
  8. 6 Source Text
  9. 7 Lexical Conventions
    1. 7.1 Unicode Format-Control Characters
    2. 7.2 White Space
    3. 7.3 Line Terminators
    4. 7.4 Comments
    5. 7.5 Tokens
    6. 7.6 Identifier Names and Identifiers
      1. 7.6.1 Reserved Words
    7. 7.7 Punctuators
    8. 7.8 Literals
      1. 7.8.1 Null Literals
      2. 7.8.2 Boolean Literals
      3. 7.8.3 Numeric Literals
      4. 7.8.4 String Literals
      5. 7.8.5 Regular Expression Literals
    9. 7.9 Automatic Semicolon Insertion
      1. 7.9.1 Rules of Automatic Semicolon Insertion
      2. 7.9.2 Examples of Automatic Semicolon Insertion
  10. 8 Types
    1. 8.1 The Undefined Type
    2. 8.2 The Null Type
    3. 8.3 The Boolean Type
    4. 8.4 The String Type
    5. 8.5 The Number Type
    6. 8.6 The Object Type
      1. 8.6.1 Property Attributes
      2. 8.6.2 Object Internal Properties and Methods
    7. 8.7 The Reference Specification Type
      1. 8.7.1 GetValue (V)
      2. 8.7.2 PutValue (V, W)
    8. 8.8 The List Specification Type
    9. 8.9 The Completion Specification Type
    10. 8.10 The Property Descriptor and Property Identifier Specification Types
      1. 8.10.1 IsAccessorDescriptor ( Desc )
      2. 8.10.2 IsDataDescriptor ( Desc )
      3. 8.10.3 IsGenericDescriptor ( Desc )
      4. 8.10.4 FromPropertyDescriptor ( Desc )
      5. 8.10.5 ToPropertyDescriptor ( Obj )
    11. 8.11 The Lexical Environment and Environment Record Specification Types
    12. 8.12 Algorithms for Object Internal Methods
      1. 8.12.1 [[GetOwnProperty]] (P)
      2. 8.12.2 [[GetProperty]] (P)
      3. 8.12.3 [[Get]] (P)
      4. 8.12.4 [[CanPut]] (P)
      5. 8.12.5 [[Put]] ( P, V, Throw )
      6. 8.12.6 [[HasProperty]] (P)
      7. 8.12.7 [[Delete]] (P, Throw)
      8. 8.12.8 [[DefaultValue]] (hint)
      9. 8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)
  11. 9 Type Conversion and Testing
    1. 9.1 ToPrimitive
    2. 9.2 ToBoolean
    3. 9.3 ToNumber
      1. 9.3.1 ToNumber Applied to the String Type
    4. 9.4 ToInteger
    5. 9.5 ToInt32: (Signed 32 Bit Integer)
    6. 9.6 ToUint32: (Unsigned 32 Bit Integer)
    7. 9.7 ToUint16: (Unsigned 16 Bit Integer)
    8. 9.8 ToString
      1. 9.8.1 ToString Applied to the Number Type
    9. 9.9 ToObject
    10. 9.10 CheckObjectCoercible
    11. 9.11 IsCallable
    12. 9.12 The SameValue Algorithm
  12. 10 Executable Code and Execution Contexts
    1. 10.1 Types of Executable Code
      1. 10.1.1 Strict Mode Code
    2. 10.2 Lexical Environments
      1. 10.2.1 Environment Records
      2. 10.2.2 Lexical Environment Operations
      3. 10.2.3 The Global Environment
    3. 10.3 Execution Contexts
      1. 10.3.1 Identifier Resolution
    4. 10.4 Establishing an Execution Context
      1. 10.4.1 Entering Global Code
      2. 10.4.2 Entering Eval Code
      3. 10.4.3 Entering Function Code
    5. 10.5 Declaration Binding Instantiation
    6. 10.6 Arguments Object
  13. 11 Expressions
    1. 11.1 Primary Expressions
      1. 11.1.1 The this Keyword
      2. 11.1.2 Identifier Reference
      3. 11.1.3 Literal Reference
      4. 11.1.4 Array Initialiser
      5. 11.1.5 Object Initialiser
      6. 11.1.6 The Grouping Operator
    2. 11.2 Left-Hand-Side Expressions
      1. 11.2.1 Property Accessors
      2. 11.2.2 The new Operator
      3. 11.2.3 Function Calls
      4. 11.2.4 Argument Lists
      5. 11.2.5 Function Expressions
    3. 11.3 Postfix Expressions
      1. 11.3.1 Postfix Increment Operator
      2. 11.3.2 Postfix Decrement Operator
    4. 11.4 Unary Operators
      1. 11.4.1 The delete Operator
      2. 11.4.2 The void Operator
      3. 11.4.3 The typeof Operator
      4. 11.4.4 Prefix Increment Operator
      5. 11.4.5 Prefix Decrement Operator
      6. 11.4.6 Unary + Operator
      7. 11.4.7 Unary - Operator
      8. 11.4.8 Bitwise NOT Operator ( ~ )
      9. 11.4.9 Logical NOT Operator ( ! )
    5. 11.5 Multiplicative Operators
      1. 11.5.1 Applying the * Operator
      2. 11.5.2 Applying the / Operator
      3. 11.5.3 Applying the % Operator
    6. 11.6 Additive Operators
      1. 11.6.1 The Addition operator ( + )
      2. 11.6.2 The Subtraction Operator ( - )
      3. 11.6.3 Applying the Additive Operators to Numbers
    7. 11.7 Bitwise Shift Operators
      1. 11.7.1 The Left Shift Operator ( << )
      2. 11.7.2 The Signed Right Shift Operator ( >> )
      3. 11.7.3 The Unsigned Right Shift Operator ( >>> )
    8. 11.8 Relational Operators
      1. 11.8.1 The Less-than Operator ( < )
      2. 11.8.2 The Greater-than Operator ( > )
      3. 11.8.3 The Less-than-or-equal Operator ( <= )
      4. 11.8.4 The Greater-than-or-equal Operator ( >= )
      5. 11.8.5 The Abstract Relational Comparison Algorithm
      6. 11.8.6 The instanceof operator
      7. 11.8.7 The in operator
    9. 11.9 Equality Operators
      1. 11.9.1 The Equals Operator ( == )
      2. 11.9.2 The Does-not-equals Operator ( != )
      3. 11.9.3 The Abstract Equality Comparison Algorithm
      4. 11.9.4 The Strict Equals Operator ( === )
      5. 11.9.5 The Strict Does-not-equal Operator ( !== )
      6. 11.9.6 The Strict Equality Comparison Algorithm
    10. 11.10 Binary Bitwise Operators
    11. 11.11 Binary Logical Operators
    12. 11.12 Conditional Operator ( ? : )
    13. 11.13 Assignment Operators
      1. 11.13.1 Simple Assignment ( = )
      2. 11.13.2 Compound Assignment ( op= )
    14. 11.14 Comma Operator ( , )
  14. 12 Statements
    1. 12.1 Block
    2. 12.2 Variable Statement
      1. 12.2.1 Strict Mode Restrictions
    3. 12.3 Empty Statement
    4. 12.4 Expression Statement
    5. 12.5 The if Statement
    6. 12.6 Iteration Statements
      1. 12.6.1 The do-while Statement
      2. 12.6.2 The while Statement
      3. 12.6.3 The for Statement
      4. 12.6.4 The for-in Statement
    7. 12.7 The continue Statement
    8. 12.8 The break Statement
    9. 12.9 The return Statement
    10. 12.10 The with Statement
      1. 12.10.1 Strict Mode Restrictions
    11. 12.11 The switch Statement
    12. 12.12 Labelled Statements
    13. 12.13 The throw Statement
    14. 12.14 The try Statement
      1. 12.14.1 Strict Mode Restrictions
    15. 12.15 The debugger statement
  15. 13 Function Definition
    1. 13.1 Strict Mode Restrictions
    2. 13.2 Creating Function Objects
      1. 13.2.1 [[Call]]
      2. 13.2.2 [[Construct]]
      3. 13.2.3 The [[ThrowTypeError]] Function Object
  16. 14 Program
    1. 14.1 Directive Prologues and the Use Strict Directive
  17. 15 Standard Built-in ECMAScript Objects
    1. 15.1 The Global Object
      1. 15.1.1 Value Properties of the Global Object
      2. 15.1.2 Function Properties of the Global Object
      3. 15.1.3 URI Handling Function Properties
      4. 15.1.4 Constructor Properties of the Global Object
      5. 15.1.5 Other Properties of the Global Object
    2. 15.2 Object Objects
      1. 15.2.1 The Object Constructor Called as a Function
      2. 15.2.2 The Object Constructor
      3. 15.2.3 Properties of the Object Constructor
      4. 15.2.4 Properties of the Object Prototype Object
      5. 15.2.5 Properties of Object Instances
    3. 15.3 Function Objects
      1. 15.3.1 The Function Constructor Called as a Function
      2. 15.3.2 The Function Constructor
      3. 15.3.3 Properties of the Function Constructor
      4. 15.3.4 Properties of the Function Prototype Object
      5. 15.3.5 Properties of Function Instances
    4. 15.4 Array Objects
      1. 15.4.1 The Array Constructor Called as a Function
      2. 15.4.2 The Array Constructor
      3. 15.4.3 Properties of the Array Constructor
      4. 15.4.4 Properties of the Array Prototype Object
      5. 15.4.5 Properties of Array Instances
    5. 15.5 String Objects
      1. 15.5.1 The String Constructor Called as a Function
      2. 15.5.2 The String Constructor
      3. 15.5.3 Properties of the String Constructor
      4. 15.5.4 Properties of the String Prototype Object
      5. 15.5.5 Properties of String Instances
    6. 15.6 Boolean Objects
      1. 15.6.1 The Boolean Constructor Called as a Function
      2. 15.6.2 The Boolean Constructor
      3. 15.6.3 Properties of the Boolean Constructor
      4. 15.6.4 Properties of the Boolean Prototype Object
      5. 15.6.5 Properties of Boolean Instances
    7. 15.7 Number Objects
      1. 15.7.1 The Number Constructor Called as a Function
      2. 15.7.2 The Number Constructor
      3. 15.7.3 Properties of the Number Constructor
      4. 15.7.4 Properties of the Number Prototype Object
      5. 15.7.5 Properties of Number Instances
    8. 15.8 The Math Object
      1. 15.8.1 Value Properties of the Math Object
      2. 15.8.2 Function Properties of the Math Object
    9. 15.9 Date Objects
      1. 15.9.1 Overview of Date Objects and Definitions of Abstract Operators
      2. 15.9.2 The Date Constructor Called as a Function
      3. 15.9.3 The Date Constructor
      4. 15.9.4 Properties of the Date Constructor
      5. 15.9.5 Properties of the Date Prototype Object
      6. 15.9.6 Properties of Date Instances
    10. 15.10 RegExp (Regular Expression) Objects
      1. 15.10.1 Patterns
      2. 15.10.2 Pattern Semantics
      3. 15.10.3 The RegExp Constructor Called as a Function
      4. 15.10.4 The RegExp Constructor
      5. 15.10.5 Properties of the RegExp Constructor
      6. 15.10.6 Properties of the RegExp Prototype Object
      7. 15.10.7 Properties of RegExp Instances
    11. 15.11 Error Objects
      1. 15.11.1 The Error Constructor Called as a Function
      2. 15.11.2 The Error Constructor
      3. 15.11.3 Properties of the Error Constructor
      4. 15.11.4 Properties of the Error Prototype Object
      5. 15.11.5 Properties of Error Instances
      6. 15.11.6 Native Error Types Used in This Standard
      7. 15.11.7 NativeError Object Structure
    12. 15.12 The JSON Object
      1. 15.12.1 The JSON Grammar
      2. 15.12.2 parse ( text [ , reviver ] )
      3. 15.12.3 stringify ( value [ , replacer [ , space ] ] )
  18. 16 Errors
  19. Annex A (informative) Grammar Summary
    1. A.1 Lexical Grammar
    2. A.2 Number Conversions
    3. A.3 Expressions
    4. A.4 Statements
    5. A.5 Functions and Programs
    6. A.6 Universal Resource Identifier Character Classes
    7. A.7 Regular Expressions
    8. A.8 JSON
      1. A.8.1 JSON Lexical Grammar
      2. A.8.2 JSON Syntactic Grammar
  20. Annex B (informative) Compatibility
    1. B.1 Additional Syntax
      1. B.1.1 Numeric Literals
      2. B.1.2 String Literals
    2. B.2 Additional Properties
      1. B.2.1 escape (string)
      2. B.2.2 unescape (string)
      3. B.2.3 String.prototype.substr (start, length)
      4. B.2.4 Date.prototype.getYear ( )
      5. B.2.5 Date.prototype.setYear (year)
      6. B.2.6 Date.prototype.toGMTString ( )
  21. Annex C (informative) The Strict Mode of ECMAScript
  22. Annex D (informative) Corrections and Clarifications in the 5th Edition with Possible 3rd Edition Compatibility Impact
  23. Annex E (informative) Additions and Changes in the 5th Edition that Introduce Incompatibilities with the 3rd Edition
  24. Annex F (informative) Technically Significant Corrections and Clarifications in the 5.1 Edition
  25. Bibliography

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes in anticipation of forthcoming internationalisation facilities and future language growth. The third edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the World Wide Web where it has become the programming language that is supported by essentially all web browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not completed and not published as the fourth edition of ECMAScript, it informs continuing evolution of the language. The fifth edition of ECMAScript (published as ECMA-262 5th edition) codifies de facto interpretations of the language specification that have become common among browser implementations and adds support for new features that have emerged since the publication of the third edition. Such features include accessor properties, reflective creation and inspection of objects, program control of property attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict mode that provides enhanced error checking and program security.

This present edition 5.1 of the ECMAScript Standard is fully aligned with third edition of the international standard ISO/IEC 16262:2011.

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of June 2011.

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it presumed to be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects, properties, and functions beyond those described in this specification. In particular, a conforming implementation of ECMAScript is permitted to provide properties not described in this specification, and values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to support program syntax that makes use of the “future reserved words” listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages – C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC 10646-1:1993, Information Technology – Universal Multiple-Octet Coded Character Set (UCS) plus its amendments and corrigenda

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational objects within a host environment. ECMAScript as defined here is not intended to be computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only the objects and other facilities described in this specification but also certain environment-specific host objects, whose description and behaviour are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed and certain functions that can be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customise, and automate the facilities of an existing system. In such systems, useful functionality is already available through a user interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the existing system is said to provide a host environment of objects and facilities, which completes the capabilities of the scripting language. A scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular Java™, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp. 227–241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output. Further, the host environment provides a means to attach scripting code to events such as change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of user interface elements and fixed and computed text and images. The scripting code is reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is possible to distribute computation between the client and server while providing a customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with zero or more attributes that determine how each property can be used—for example, when the Writable attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an object is a member of the remaining built-in type Object; and a function is a callable object. A function that is associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-in objects include the global object, the Object object, the Function object, the Array object, the String object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError, TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types associated with properties, and defined functions are not required to have their declarations appear textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation or via constructors which create objects and then execute code that initialises all or part of them by assigning initial values to their properties. Each constructor is a function that has a property named “prototype” that is used to implement prototype-based inheritance and shared properties. Objects are created by using constructors in new expressions; for example, new Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that depend on the constructor. For example, Date() produces a string representation of the current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of its constructor’s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object, that reference is to the property of that name in the first object in the prototype chain that contains a property of that name. In other words, first the object mentioned directly is examined for such a property; if that object contains the named property, that is the property to which the reference refers; if that object does not contain the named property, the prototype for that object is examined next; and so on.

An image of lots of boxes and arrows.
Figure 1 — Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, cf2, cf3, cf4, and cf5. Each of these objects contains properties named q1 and q2. The dashed lines represent the implicit prototype relationship; so, for example, cf3’s prototype is CFp. The constructor, CF, has two properties itself, named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The property named CFP1 in CFp is shared by cf1, cf2, cf3, cf4, and cf5 (but not by CF), as are any properties found in CFp’s implicit prototype chain that are not named q1, q2, or CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to them. That is, constructors are not required to name or assign values to all or any of the constructed object’s properties. In the above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and cf5 by assigning a new value to the property in CFp.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict their usage of some features available in the language. They might do so in the interests of security, to avoid what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant of the language excludes some specific syntactic and semantic features of the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant also specifies additional error conditions that must be reported by throwing error exceptions in situations that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code units. In this case, strict mode only applies when actually executing code that is defined within a strict mode code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this specification. In addition, an implementation must support the combination of unrestricted and strict mode code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1 type

set of data values as defined in Clause 8 of this specification

4.3.2 primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8

NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.3.3 object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4.3.4 constructor

function object that creates and initialises objects

NOTE The value of a constructor’s “prototype” property is a prototype object that is used to implement inheritance and shared properties.

4.3.5 prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’s “prototype” property for the purpose of resolving property references. The constructor’s “prototype” property can be referenced by the program expression constructor.prototype, and properties added to an object’s prototype are shared, through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified prototype by using the Object.create built-in function.