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ABSTRACT

The design of effective heuristics for complex combinatorial optimization prob-
lems has traditionally relied on extensive domain expertise and manual effort.
While Large Language Model-based Automated Heuristic Design (LLM-AHD)
offers a promising path toward autonomous heuristic generation, existing meth-
ods often suffer from undirected search processes and poor interpretability. To
address these limitations, we introduce Textual Preference Differentiation for Au-
tomatic Heuristic Design (TPD-AHD), a novel framework that integrates prefer-
ence optimization with textual feedback to guide LLM-driven heuristic evolution.
TPD-AHD employs a best-anchored strategy to pair heuristic candidates and gen-
erates a natural language textual loss. This loss is then translated into a textual
gradient, which provides explicit, interpretable instructions for iterative heuris-
tic refinement. This approach not only enhances the transparency of the opti-
mization trajectory but also ensures a directed search toward high-performance
regions. Extensive experiments on a suite of NP-hard combinatorial optimiza-
tion problems demonstrate that TPD-AHD consistently outperforms both man-
ually designed heuristics and existing LLM-AHD methods. Furthermore, it ex-
hibits strong generalization capabilities across diverse domains and provides clear
insights into the heuristic improvement process. TPD-AHD establishes a new
paradigm for interpretable, efficient, and scalable automatic heuristic design.

1 INTRODUCTION

Combinatorial optimization (CO) constitutes a cornerstone of industrial and scientific computing,
with broad applications spanning logistics, scheduling, and resource allocation (Desale et al., 2015;
Cappart et al., 2023). Traditional approaches often rely on handcrafted heuristics (Forrest, 1996;
Dorigo et al., 2007; Kennedy & Eberhart, 1997), whose design demands substantial domain exper-
tise and manual effort. To alleviate this burden, Automatic Heuristic Design (AHD), also known as
Hyper-Heuristics (Burke et al., 2013), has emerged as a promising paradigm for generating heuristic
functions within general optimization frameworks. However, conventional AHD methods typically
operate on fixed operator sets (Liu et al., 2024a), limiting their flexibility and adaptability in complex
real-world scenarios.

Recent advancements in large language models (LLMs) have opened new avenues for optimiza-
tion research (Naveed et al., 2025). Building on this progress, AHD has evolved into LLM-based
Automated Heuristic Design (LLM-AHD) (Liu et al., 2024a), or Language Hyper-Heuristics (Ye
et al., 2024). These methods leverage the generative capabilities of LLMs to autonomously pro-
duce high-quality heuristics for intricate optimization tasks. Current LLM-AHD methods can be
broadly categorized into three approaches: population evolution, tree search, and large neighbor-
hood search. Despite these advancements, LLM-AHD faces two critical challenges: (1) the search
process often lacks clear guidance, relying on trial-and-error mechanisms that ignore the interdepen-
dencies among heuristics, and (2) the optimization trajectory remains opaque, creating a black-box
problem that undermines credibility and practical deployment.

The Textual Differentiation (TD) framework, recently highlighted in Nature (Yuksekgonul et al.,
2025), offers valuable insights for enhancing LLM-AHD. By expressing optimization signals in nat-
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ural language, TD improves interpretability and aligns with human cognitive processes, thereby re-
ducing the black-box nature of traditional LLM-AHD. However, directly integrating TD into LLM-
AHD poses notable challenges. The complexity of TD prompts increases computational overhead,
while reliance on lengthy textual feedback exacerbates LLM hallucinations, limiting heuristic ex-
ploration and the discovery of high-quality solutions. Consequently, a straightforward application
of TD may fail to provide effective guidance for heuristic evolution.

To overcome these limitations, we introduce Textual Preference Differentiation for Automatic
Heuristic Design (TPD-AHD), a novel framework to incorporate textual differentiation and pref-
erence pairing mechanisms into LLM-AHD. Our approach introduces three key contributions:

1. We propose TPD-AHD, the first LLM-AHD framework to incorporate textual differentia-
tion for combinatorial optimization. It conceptualizes LLM feedback as a textual gradient,
enabling precise and interpretable prompt-based heuristic optimization.

2. We design a best-anchored preference pairing mechanism that efficiently generates a stable
textual loss. This allows TPD-AHD to function as an online algorithm design system,
iteratively refining heuristics through explicit preference feedback.

3. We demonstrate that TPD-AHD serves as a unified framework for generating high-
performing heuristics across diverse NP-hard problems. Extensive experiments show that
it outperforms both manually designed heuristics and existing LLM-AHD methods, while
providing unprecedented transparency into the heuristic evolution process.

2 RELATED WORK

LLM-based Automated Heuristic Design. The rapid development of LLMs brings new oppor-
tunities for optimization algorithm research. Existing research demonstrates that LLMs have been
widely applied in multiple optimization-related fields, including prompt optimization (Zhou et al.,
2022; Wang et al., 2024; Guo et al., 2023), reward function design (Ma et al., 2024; Xie et al., 2024),
self-optimization (Liu et al., 2024c; 2025; Zelikman et al., 2024), neural architecture search (Chen
et al., 2023), and general optimization problems (Wang et al., 2023; Yang et al., 2023).

LLM-AHD stands out as a pivotal approach within the self-optimization paradigm. As represen-
tative studies in this field, Funsearch (Romera-Paredes et al., 2024) and EoH (Liu et al., 2024a)
pioneeringly integrate large models with evolutionary computation, driving the automatic gener-
ation and optimization of heuristic functions through population iterative evolution. ReEvo (Ye
et al., 2024) integrates the reflection mechanism (Shinn et al., 2023), thereby boosting the trans-
fer and reasoning capabilities of LLMs across diverse function samples. HSEvo (Dat et al., 2025)
combines diversity metrics with the harmony search algorithm (Shi et al., 2012), significantly en-
hancing population diversity while guaranteeing performance. MCTS-AHD (Zheng et al., 2025)
is the first LLM-based automated tuning tree search method in LLM-AHD, thus breaking the con-
vention of population-based structures in previous methods. LLM-LNS (Ye et al., 2025) applies
the dual-layer self-evolutionary LLM agent to generating neighborhood selection strategies in Large
Neighborhood Search (LNS) (Ahuja et al., 2002), delivering promising performance for large-scale
Mixed Integer Linear Programming (MILP) problems. AlphaEvolve (Novikov et al., 2025), as a
general-purpose closed-source system combining LLMs with evolutionary computation, leverages
large-scale computing resources to demonstrate notable potential in a broad spectrum of problems,
such as automatic heuristic generation.

Preference Optimization for LLMs. Preference optimization techniques aim to align LLM out-
puts with human or task-specific preferences by learning from paired comparisons. Reinforcement
Learning from Human Feedback (RLHF) (Ouyang et al., 2022) established the foundational ap-
proach of training a reward model on preference data and then using it for policy optimization.
Rafailov et al. (2023) simplified this pipeline with Direct Preference Optimization (DPO), which op-
timizes the policy directly using the preference probabilities without an explicit reward model. More
recently, Li et al. (2025) proposed Test-Time Preference Optimization (TPO), an online method that
refines LLM responses during inference based on iterative feedback. Our method draws inspiration
from the core idea of learning from pairwise comparisons. However, instead of tuning the parame-
ters of an LLM for general alignment, we adapt the preference optimization paradigm to guide the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

generation of heuristic code within an automated design loop, using textual feedback to define the
optimization signal.

Textual Gradient Methods. Textual Gradient is an emerging optimization technique in natural
language processing. It simulates textual backpropagation using feedback from LLMs to iteratively
refine components within complex Artificial Intelligence (AI) systems.

The concept was first introduced by Hou et al. (2023) to generate high-quality adversarial examples
for language models, adapting methods like Projected Gradient Descent (PGD) from computer vi-
sion to the discrete text domain. Building on this foundation, Mavromatis et al. (2023) extended
gradient-based optimization to graph-structured text data, introducing the Graph-Aware Distillation
(GRAD) framework. Subsequently, Yuksekgonul et al. (2025) reformulated textual gradients as a
general-purpose framework that leverages natural language feedback from LLMs to simulate back-
propagation in AI computation graphs. Most recently, Ding et al. (2025) introduced the Textual
Gradient Descent with Momentum (TSGD-M) method, which incorporates sampling-based mo-
mentum to significantly enhance training efficiency and stability, enabling the application of textual
gradients at scale. These advancements highlight the growing maturity and applicability of textual
gradient methods in diverse AI optimization scenarios.

3 PRELIMINARIES

3.1 AUTOMATIC HEURISTIC DESIGN

For a given combinatorial optimization task P , Automatic Heuristic Design (AHD) (Stützle &
López-Ibáñez, 2018) seeks to determine the optimal heuristic h∗ from a candidate space H that
maximizes a performance measure g:

h∗ = argmax
h∈H

g(h). (1)

A heuristic h ∈ H is formally defined as an algorithm that maps the input space IP to the solution
space SP , i.e., h : IP → SP . The function g : H → R evaluates the performance of heuristic h and
produces a fitness value. For minimization tasks with an objective function f : SP → R, the fitness
value of h is often estimated as the expected value over all instances i in a dataset D ⊆ IP , where
D denotes a dataset of problem instances:

g(h) = Ei∈D[−f(h(i))]. (2)

To streamline the design process, AHD frameworks often operate within a predefined meta-
algorithmic template (e.g., a constructive search or local search framework). The AHD process
focuses on optimizing the heuristic components (e.g., a node selection rule in a greedy constructor
or a move strategy in a local search) that guide the algorithm’s decisions, rather than building an
entire solver from scratch.

3.2 AUTOMATIC DIFFERENTIATION VIA TEXT

Automatic Differentiation via Text, or TEXTGRAD (Yuksekgonul et al., 2025), enables gradient-
style optimization in natural language by converting textual feedback into differentiable signals.
These signals guide iterative refinement of discrete variables such as prompts or heuristics.

TEXTGRAD treats an LLM as a differentiable engine in a compositional process. Consider a prompt
optimization task structured as a chain:

x
LLM−−−→ y

LLM−−−→ L, (3)

where x is an input (e.g., a prompt instructing the generation of a heuristic), y = LLM(x) is the
intermediate output (e.g., the generated heuristic code), and L = LLM(y) is a scalar loss that
evaluates y (e.g., a textual critique of the heuristic’s quality).

Treating both mappings as differentiable black-boxes, TEXTGRAD defines textual gradients
∂y

∂x
= ∇LLM(x, y),

∂L
∂y

= ∇LLM(y,L) (4)
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Figure 1: An overview of the TPD-AHD framework, consisting of forward and backward propaga-
tion. In forward propagation, N heuristics are generated via an LLM, and the best-anchor strategy
constructs preference pairs to compute textual loss. In backward propagation, the loss is converted
into textual gradient for iterative heuristic optimization. Heuristics are stored in a fixed-capacity
candidate heuristic solution pool, retaining only the top-ranked individuals.

that quantify how perturbations in x propagate to y and subsequently to L. Applying the chain rule
yields the update direction

∂L
∂x

=
∂y

∂x
◦ ∂L
∂y

= ∇LLM

(
x, y,

∂L
∂y

)
, (5)

where ◦ denotes composition of gradient signals. Finally, the prompt is updated with any standard
optimizer or optimization rule:

xnew = Optim.step
(
x,

∂L
∂x

)
. (6)

Optim.step applies the textual gradient to the prompt x to produce xnew. Iterating this procedure re-
fines x to maximize L, yielding an interpretable, gradient-driven optimization loop in purely textual
space.

4 METHODOLOGY

4.1 OVERALL FRAMEWORK

The TPD-AHD framework introduced in this paper builds upon the TEXTGRAD concept but tailors it
specifically for the AHD setting. We introduce a novel best-anchored preference pairing mechanism
to generate a more stable and informative textual loss, which in turn yields more effective textual
gradients for guiding the evolution of heuristics. The core innovation lies in translating preference
optimization signals into interpretable textual forms, which enable a transparent and directed search
process.

The framework, as illustrated in Figure 1, is structured around two synergistic processes: forward
propagation and backward propagation, mimicking the gradient-based optimization paradigm in
continuous spaces but operating entirely in the discrete textual domain. In the forward propagation
phase, TPD-AHD generates a diverse set of candidate heuristics, evaluates their performance, and
constructs preference-based pairs using a best-anchoring strategy. This process yields a textual loss
that quantifies the relative quality between heuristics. During backward propagation, the textual loss
is converted into a textual gradient—a set of natural language instructions that guide the update
of the task prompt. This prompt is then used to generate improved heuristics in the next iteration.
By maintaining a fixed-capacity candidate pool, TPD-AHD ensures that only the most promising
heuristics are retained, balancing exploration and exploitation throughout the optimization process.

4
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4.2 FORWARD PROPAGATION: FROM HEURISTICS TO TEXTUAL LOSS

The forward propagation phase aims to assess the current heuristic population and quantify their rel-
ative performance through a structured loss signal. This phase consists of three key steps: candidate
pool management, best-anchored preference pairing, and textual loss computation.

Candidate Heuristic Pool Management. TPD-AHD maintains a dynamic candidate pool P =
{h1, h2, . . . , hN} of heuristics, where each hi is generated by an LLM based on a task-specific
prompt x(t) at iteration t. The pool is initialized by sampling N heuristics from the LLM using an
initial prompt Pinit(x, f) that incorporates the problem description x and a template function f :

h
(i)
init = LLM(Pinit(x, f)), i = 1, . . . , N. (7)

Each heuristic is evaluated on a dataset D of problem instances, and assigned a fitness score f(hi)
according to Equation (2). The pool is periodically updated to retain only the top-N heuristics based
on fitness, ensuring that high-quality candidates guide subsequent iterations.

Best-Anchored Preference Pairing. To focus learning on the most promising directions, TPD-
AHD employs a best-anchored strategy for constructing preference pairs. The heuristics in P are
ranked by fitness: P̄ = {h1 ≻ h2 ≻ · · · ≻ hN}, where h1 is the best-performing heuristic. Then,
N − 1 preference pairs are formed as:

P = {(h1, hi) | i = 2, . . . , N}, (8)

where each pair (hw, hl) satisfies hw ≻ hl. This strategy prioritizes comparisons with the current
best heuristic, reducing noise from low-quality candidates and providing a clear optimization anchor.

Textual Loss Computation. For each preference pair (hw, hl), a textual loss function
Ploss(hw, hl) is constructed. This prompt-based function asks the LLM to compare hw and hl and
explain why hw is preferred. The output is a natural language summary Ltext that captures the
strengths of hw and weaknesses of hl:

Ltext = LLM(Ploss(hw, hl)). (9)

This textual loss serves as a interpretable performance signal that will guide the backward update.

4.3 BACKWARD PROPAGATION: FROM TEXTUAL LOSS TO PROMPT UPDATE

The backward phase translates the textual loss into actionable update directions via textual gradients,
which are then used to refine the prompt and generate improved heuristics.

Textual Gradient Generation. Using a gradient prompt Pgrad(Ltext), the LLM is instructed to
generate a set of natural language instructions—the textual gradient—that suggest how the prompt
x should be modified to reduce the loss:

∂Ltext

∂x
= LLM(Pgrad(Ltext)). (10)

This gradient approximates the effect of prompt changes on heuristic quality, effectively simulating
backpropagation in textual space. Formally, since Ltext depends on both (hw, hl) generated from x,
the chain rule yields:

∂Ltext

∂x
=

∂hw

∂x
◦ ∂Ltext

∂hw
+

∂hl

∂x
◦ ∂Ltext

∂hl
, (11)

where ∂hw

∂x and ∂hl

∂x reflect the sensitivity of the prompt, ∂Ltext
∂hw

and ∂Ltext
∂hl

capture the loss change with
respect to the heuristic.
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Prompt Update and Heuristic Regeneration. The prompt x(t) is updated by incorporating the
guidance from the textual gradient. This is achieved through a symbolic optimization step:

x(t+1) = Optim.step
(
x(t),

∂Ltext

∂x

)
. (12)

In practice, Optim step typically involves appending or integrating the gradient instructions into the
existing prompt. This new prompt x(t+1) is then used to generate a new set of heuristics:

hnew = LLM(x(t+1)). (13)

This process is repeated for each of the N−1 preference pairs, producing N−1 new heuristics. The
candidate pool is then updated by merging these new heuristics with the existing ones, re-ranking
by fitness, and retaining the top N . The entire forward-backward cycle is iterated T times, enabling
continuous heuristic improvement.

4.4 COMPUTATIONAL ANALYSIS

The computational complexity is dominated by LLM inference. Each iteration requires O(N) calls
for heuristic generation, O(N) calls for loss computation (as best-anchored pairing reduces com-
parisons from O(N2) to O(N)), and O(N) calls for gradient generation and heuristic regeneration.
Thus, the overall complexity for T iterations is O(TN), ensuring scalability.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

This section outlines the experimental protocol used to evaluate the proposed TPD-AHD framework
across a suite of challenging tasks, including classic NP-hard Combinatorial Optimization Problems
(NP-hard COPs) and practical optimization tasks. Detailed definitions of these tasks are provided in
Appendix A. The experiments aim to validate TPD-AHD’s ability to generate high-quality heuristics
while ensuring methodological transparency and reproducibility. The LLM4AD platform (Liu et al.,
2024b) was utilized to conduct these experiments, offering a robust infrastructure for LLM-AHD
research.

Baselines. To assess the heuristic design capability of TPD-AHD, we compared it with several
state-of-the-art LLM-AHD methods, including Funsearch (Romera-Paredes et al., 2024), EoH (Liu
et al., 2024a), ReEvo (Ye et al., 2024), and MCTS-AHD (Zheng et al., 2025). Funsearch and ReEvo
rely on manually designed seed functions to initiate the heuristic development process. In con-
trast, EoH, MCTS-AHD, and TPD-AHD can commence the heuristic evolution process without
predefined seed functions, thereby demonstrating greater general applicability. In our experiments,
identical seed functions were provided for each design scenario to ensure a fair comparison without
leveraging external domain-specific knowledge.

For each comparison method, we report the average gap to the (near-)optimal solutions, solved by
Concorde (Applegate et al., 2006) (for TSP), HGS Vidal (2020) (for VRP), or givenoptimality (for
TSPLIB Reinelt (1991), CVRPLIB Uchoa et al. (2017) and JSP TA instances(Taillard, 1993)).

Experimental Configuration. Following the configuration of EoH, the maximum number of
heuristic search samples for all LLM-AHD methods was set to 200. For EoH, the population size
was configured to 10 with 20 iterations. For TPD-AHD, the candidate solution pool size was set
to N = 10, with a total of T = 20 iterations. To mitigate statistical bias, each LLM-based AHD
method was independently executed three times for the heuristic algorithm design in each appli-
cation scenario. Details on the construction of the evaluation dataset D and the general framework
settings for each task are provided in Appendix B. The experiments primarily utilized the DeepSeek-
Chat and GPT-4o-Mini language models, with a temperature setting of 1.0 to balance exploration
and exploitation during heuristic generation.
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Table 1: Performance comparison of LLM-based AHD methods on TSP, CVRP, and JSSP using
the step-by-step construction framework. (near-)Optimal solutions for TSP were obtained via Con-
corde, those for CVRP via HGS, and JSSP optimal are sourced from standard JSP benchmarks (TA
instances). The best-performing method for each LLM model is highlighted with shading.

Task TSP CVRP JSSP
Problem Size N = 50 N = 100 N = 50, C = 40 N = 100, C = 40 S = 50 × 15 S = 100 × 20

Method Obj.↓ Gap↓% Obj.↓ Gap↓% Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ %
(near-)Optimal 5.71 - 7.76 - 9.52 - 16.40 - 2773.8 - 5365.7 -

LLM Model: DeepSeek-Chat
Funsearch 6.85 19.98 9.46 21.93 13.86 45.62 23.85 45.43 3596.67 29.67 5394.89 0.54

EoH 6.59 15.30 9.18 18.31 13.89 45.94 24.11 47.03 2800.22 0.95 5389.39 0.44
ReEvo 6.61 15.75 9.22 18.81 13.81 45.01 23.79 49.08 2812.81 1.41 5384.33 0.35

MCTS-AHD 6.64 16.13 9.24 19.15 13.57 42.61 23.46 43.06 2894.59 4.35 5365.78 3.73
TPD-AHD 6.44 12.79 8.89 14.65 13.27 39.74 22.93 39.81 2802.00 1.02 5384.22 0.35

LLM Model: GPT-4o-Mini
Funsearch 6.72 17.54 9.32 20.16 13.86 45.62 24.26 47.95 2783.52 0.35 5389.5 0.54

EoH 6.42 12.45 8.95 15.34 13.88 45.84 23.97 46.16 2798.44 0.89 5389.93 0.45
ReEvo 6.73 17.76 9.32 20.19 13.79 44.93 23.74 44.77 2807.93 1.23 5385.22 0.36

MCTS-AHD 6.73 17.84 9.33 20.29 13.91 46.20 24.10 46.94 2936.94 5.88 5445.41 1.49
TPD-AHD 6.39 11.34 8.85 14.03 13.71 44.04 23.39 42.61 2796.00 0.80 5384.22 0.35

Table 2: Performance of LLM-based AHD methods on TSP, CVRP, and MKP using the Ant Colony
Optimization framework. Results are averaged across 64 instances per test set over three runs.

Task TSP CVRP MKP
Problem Size N = 50 N = 100 N = 50, C = 40 N = 100, C = 40 N = 100,M = 5 N = 200,M = 5

Method Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↑ Gap↓ % Obj.↑ Gap↓ %
(near-)Optimal 5.71 - 7.76 - 9.52 - 16.40 - 23.26 - 42.49 -

LLM Model: DeepSeek-Chat
Funsearch 6.27 9.80 13.36 20.16 11.06 16.22 19.64 19.77 22.861 1.717 41.024 3.453

EoH 5.94 4.01 8.76 12.93 10.70 12.41 19.02 15.99 22.857 1.730 41.027 3.459
ReEvo 5.92 3.64 8.84 14.00 10.75 13.00 18.95 15.53 22.864 1.700 41.021 3.459

MCTS-AHD 5.81 1.66 8.25 6.38 10.54 10.80 18.67 13.83 22.853 1.748 41.129 3.206
TPD-AHD 5.80 1.58 8.22 6.00 10.34 8.67 18.48 12.67 22.873 1.665 41.027 3.446

LLM Model: GPT-4o-Mini
Funsearch 5.81 1.67 8.26 6.41 10.40 9.25 18.67 13.82 22.843 1.793 41.068 3.349

EoH 5.79 1.41 8.21 5.89 10.39 9.14 18.54 13.05 22.587 1.731 41.027 3.444
ReEvo 5.80 1.49 8.34 7.44 10.59 11.24 18.71 14.12 22.863 1.706 41.000 3.508

MCTS-AHD 5.77 1.06 8.20 5.70 10.65 11.94 18.74 14.30 22.834 1.832 41.092 3.293
TPD-AHD 5.79 1.35 8.21 5.88 10.35 8.73 18.34 11.86 22.867 1.688 41.083 3.314

5.2 EXPERIMENTS ON CLASSIC NP-HARD COPS

We evaluated TPD-AHD on a comprehensive suite of NP-hard COPs, including the Traveling Sales-
man Problem (TSP), Capacitated Vehicle Routing Problem (CVRP), Open Vehicle Routing Problem
(OVRP), Vehicle Routing Problem with Time Windows (VRPTW), Job Shop Scheduling Problem
(JSSP), Capacitated Facility Location Problem (CFLP), Multiple Knapsack Problem (MKP) and
Maximum Admissible Set Problem (MASP). To demonstrate framework generality, we instanti-
ated TPD-AHD within two established heuristic paradigms: step-by-step construction (Asani et al.,
2023) and Ant Colony Optimization (ACO) (Dorigo et al., 2007).

Step-by-Step Construction Framework. The constructive heuristic framework provides a princi-
pled approach for generating feasible solutions through sequential decision-making. This paradigm
is widely adopted in both traditional heuristic design and neural combinatorial optimization (NCO)
research (Bello et al., 2017). We integrated TPD-AHD into this framework to automatically design
construction heuristics for all studied problems, with detailed results for CFLP, OVRP, VRPTW and
ASP presented in Appendix C.

Experimental Configuration. For TSP, CVRP, and JSSP, the training set Dtrain comprised 256 TSP
instances (50 nodes), 16 CVRP instances (50 nodes, capacity 40), and 16 JSSP instances (50 jobs ×
15 machines). The test set Dtest included 1,000 TSP instances (50/100 nodes), 64 CVRP instances
(50/100 nodes, capacity 40), and 16 JSSP instances (50×15, 15×15 configurations). The core heuris-
tic function iteratively selects the next state based on partial solution context.
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Table 3: Performance comparison on practical optimization tasks.

Machine Learning Science Discovery
Task Acrobot (Obj.↓) Mountain Car (Obj.↓) Bactgrow (Obj.↓) Feynman SRSD (Obj.↓) Oscillator (Obj.↓) Circle Packing (Obj.↑)

Funsearch 0.147 0.16 0.014 0.15 4.10E-04 -
EoH 0.143 0.18 0.009 0.005 3.22E-06 2.11

ReEvo 0.218 0.68 0.002 0.040 6.49E-07 2.31
TPD-AHD 0.141 0.09 0.005 0.019 3.86E-08 2.40

Table 4: Ablation analysis of TPD-AHD components on TSP construction tasks. Performance
averages (three runs, 1,000 instances) show degradation when disabling preference pairing (TPD-
p1–p3) or gradient mechanisms (TPD-g1–g2).

TPD-AHD TPD-p1 TPD-p2 TPD-p3 TPD-g1 TPD-g2
Problem Size N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100

Run 1 6.46 8.93 7.00 9.68 7.00 9.68 6.50 8.96 6.48 8.97 7.00 9.68
Run 2 6.46 8.92 6.67 9.30 6.49 8.99 6.47 8.92 7.00 9.68 6.49 9.03
Run 3 6.41 8.83 6.49 8.99 7.00 9.68 6.63 9.23 6.47 8.92 6.47 8.95

Average 6.44 8.89 6.72 9.32 6.83 9.45 6.53 9.04 6.65 9.19 6.65 9.22

Performance Analysis. Table 1 presents comparative results against state-of-the-art LLM-AHD
methods. TPD-AHD consistently outperformed all baselines across problem domains and instance
sizes. Notably, it achieved relative gaps of 11.34% (TSP-50) and 14.03% (TSP100) with GPT-4o-
Mini, showing robust optimization capabilities. The method’s superiority is particularly evident in
complex routing problems, where it reduced CVRP100 gaps by 3–8% compared to alternatives.

Ant Colony Optimization Framework. The ACO framework models optimization as a collec-
tive intelligence process, using pheromone matrices and heuristic information to guide solution con-
struction. We adapted TPD-AHD to automatically design the heuristic component of ACO, enabling
domain-specific adaptation without manual engineering.

Experimental Configuration. For TSP and CVRP, we maintained consistent training/test splits with
the constructive framework. MKP experiments used 10 training instances (100 items, 5 constraints)
and 64 test instances (100/200 items, 5 constraints). The LLM-generated heuristics determined state
transition probabilities within the ACO metaheuristic.

Performance Analysis. As shown in Table 2, TPD-AHD achieved state-of-the-art results across all
ACO-based optimization tasks. On TSP100, it attained a minimal 1.58% gap with DeepSeek-Chat,
significantly outperforming Funsearch (9.80%) and ReEvo (3.64%). The framework demonstrated
particular strength in CVRP, where it reduced optimality gaps by 4–6% compared to the nearest
competitor. These results highlight TPD-AHD’s ability to effectively optimize within population-
based metaheuristic frameworks.

5.3 EXPERIMENTS ON PRACTICAL OPTIMIZATION TASKS

To evaluate the generalization capability of TPD-AHD beyond classical COPs, we conducted ex-
periments on practical optimization tasks spanning machine learning control problems and scientific
discovery challenges. These tasks include Acrobot (Swing-up), Mountain Car, Bacterial Growth
modeling, Feynman Symbolic Regression (SRSD), Oscillator Design, and Circle Packing problems.
Detailed problem definitions are provided in Appendix A.

Table 3 presents comparative results across these diverse domains. TPD-AHD demonstrates ro-
bust performance, achieving state-of-the-art results on 4 out of 6 tasks. Particularly noteworthy is its
performance on the Mountain Car control task, where it achieved an objective value of 0.09—signif-
icantly outperforming the next best method (Funsearch at 0.16). In scientific discovery tasks, TPD-
AHD obtained near-optimal solutions for the Oscillator design problem (3.86E-08) and Circle Pack-
ing (2.40). These results highlight TPD-AHD’s versatility across various optimization paradigms.
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Figure 2: Comparative convergence analysis of TPD-AHD against baseline LLM-AHD methods.
Results show mean performance (solid lines) with standard deviation (shaded regions) across three
independent runs. Left: TSP task. Right: CVRP task.
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Figure 3: Parameter sensitivity analysis of TPD-AHD. Left: Performance variation across LLM
architectures. Center: Effect of temperature parameter on generation diversity and quality. Right:
Impact of candidate pool size on optimization effectiveness.

5.4 ABLATION STUDY, CONVERGENCE AND PARAMETER SENSITIVITY ANALYSIS

To systematically evaluate the contribution of each component in TPD-AHD, we conduct compre-
hensive ablation studies focusing on two core modules: the best-anchored preference pairing mecha-
nism and the textual differentiation framework. We examine five variants: TPD-p1–p3 progressively
remove components of the preference pairing strategy, while TPD-g1–g2 disable aspects of the gra-
dient generation mechanism. The specific implementation of the ablation variants is presented in
Appendix C.

Table 4 demonstrates that TPD-AHD’s superior performance emerges from the synergistic integra-
tion of its components. The performance degradation observed in all ablated variants confirms that
effective heuristic optimization requires both accurate preference modeling through anchoring and
proper utilization of textual gradient signals. The complete framework achieves optimal perfor-
mance by maintaining the interdependence between these components.

We further analyze TPD-AHD’s convergence properties and sensitivity to key hyperparameters. Fig-
ure 2 presents comparative convergence trajectories, while Figure 3 examines the impact of critical
parameters on solution quality. The convergence analysis in Figure 2 demonstrates that TPD-AHD
achieves superior solution quality with more stable optimization trajectories compared to existing
methods. The parameter sensitivity study reveals robust performance across configurations, with
optimal results obtained using either DeepSeek-Chat or GPT-4o-Mini models, temperature setting
of 1.0, and candidate pool size of 10. These findings indicate that TPD-AHD maintains consistent
performance without requiring extensive hyperparameter tuning.

6 CONCLUSION

This paper introduces TPD-AHD, a novel framework that integrates textual differentiation with large
language models for automated heuristic design. By introducing a best-anchored pairing strategy
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and a forward-backward-update loop, TPD-AHD translates LLM feedback into interpretable textual
loss and gradient signals, enabling guided and transparent heuristic optimization. Extensive experi-
ments on NP-hard COPs demonstrate that TPD-AHD consistently outperforms existing LLM-AHD
methods across diverse problem domains and algorithmic frameworks. The framework provides a
unified, interpretable, and effective approach for automatic heuristic generation, establishing a new
paradigm for transparent and reliable LLM-based optimization systems. Future work will explore
more efficient gradient approximation methods and adaptive pool sizing strategies. Additionally,
extending the framework to dynamic problem settings presents promising research directions.
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Thomas Stützle and Manuel López-Ibáñez. Automated design of metaheuristic algorithms. In
Handbook of metaheuristics, pp. 541–579. Springer, 2018.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. Advances in neural information processing systems, 8, 1995.

Eric Taillard. Benchmarks for basic scheduling problems. European journal of operational research,
64(2):278–285, 1993.

Eduardo Uchoa, Diego Pecin, Artur Alves Pessoa, Marcus Poggi de Aragão, Thibaut Vidal, and
Anand Subramanian. New benchmark instances for the capacitated vehicle routing problem.
Eur. J. Oper. Res., 257:845–858, 2017. URL https://api.semanticscholar.org/
CorpusID:2749712.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science advances, 6(16):eaay2631, 2020.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Comput. Oper. Res., 140:105643, 2020. URL https://api.semanticscholar.
org/CorpusID:229331629.

12

https://api.semanticscholar.org/CorpusID:207225504
https://api.semanticscholar.org/CorpusID:2749712
https://api.semanticscholar.org/CorpusID:2749712
https://api.semanticscholar.org/CorpusID:229331629
https://api.semanticscholar.org/CorpusID:229331629


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36:30840–30861, 2023.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=22pyNMuIoa.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=tUM39YTRxH.

Hegen Xiong, Shuangyuan Shi, Danni Ren, and Jinjin Hu. A survey of job shop scheduling problem:
The types and models. Computers & Operations Research, 142:105731, 2022.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024.

Huigen Ye, Hua Xu, An Yan, and Yaoyang Cheng. Large language model-driven large neighbor-
hood search for large-scale milp problems. In Forty-second International Conference on Machine
Learning, 2025.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639(8055):609–616, 2025.

Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai. Self-taught optimizer (stop):
Recursively self-improving code generation. In First Conference on Language Modeling, 2024.

Haoyue Zhang and Jörg Kalcsics. Capacitated facility location problem under uncertainty with
service level constraints. European Journal of Operational Research, 2025.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for com-
prehensive exploration in LLM-based automatic heuristic design. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
Do1OdZzYHr.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The eleventh interna-
tional conference on learning representations, 2022.

13

https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=Do1OdZzYHr
https://openreview.net/forum?id=Do1OdZzYHr


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DEFINITION OF TASKS

A.1 CLASSIC NP-HARD COPS

Traveling Salesman Problem The Traveling Salesman Problem (TSP) (Matai et al., 2010) aims to
find the shortest route that visits all given locations exactly once and returns to the starting point. It is
one of the most important combinatorial optimization problems and serves as a common testbed for
heuristic design methods. The heuristic search process is conducted on a set of 64 TSP-50 instances.
The coordinates for these instances are randomly sampled from the range [0, 1] (Kool et al., 2019),
and the negative of the total route distance is used as the fitness value. The average distance of the
solutions generated by Concorde (Applegate et al., 2006) is taken as the (near-)optimal value.

Open Vehicle Routing Problem The Open Vehicle Routing Problem (OVRP) (Li et al., 2007)
considers a fleet of vehicles that are not required to return to the depot after serving the last customer.
In this benchmark suite, 10 OVRP-50 instances are generated; each instance contains 50 customer
nodes. Coordinates are uniformly sampled from [0, 1]2, integer demands are drawn from U(1, 9),
and vehicle capacity is fixed at 40. The edge-cost matrix is computed as the Euclidean distance
between every pair of nodes. The objective is to construct a set of open routes that jointly visit every
customer exactly once while respecting capacity limits and minimizing the total travel cost. The
average cost of the solutions produced by the HGS (Vidal, 2020) is taken as the reference optimum.

Capacitated Vehicle Routing Problem The Capacitated Vehicle Routing Problem (CVRP) (Fitz-
patrick et al., 2024) seeks a set of minimum-cost vehicle routes that start and end at a single depot,
such that every customer is visited exactly once, the total demand on each route does not exceed
the vehicle capacity, and the fleet size is unlimited. It is a cornerstone combinatorial optimization
problem and a standard benchmark for heuristic and learning-based methods. Two benchmark suites
are employed: 64 CVRP-50 instances and 64 CVRP-100 instances. For every instance, customer
coordinates are uniformly sampled from [0, 1]2, integer demands are drawn from {1, . . . , 9} (the
depot demand is set to 0), and the Euclidean distance matrix is computed; vehicle capacity is fixed
at 50 for CVRP-50 and 100 for CVRP-100. The negative of the total route distance is used as the
fitness value. The average distance of the solutions produced by the HGS (Vidal, 2020) is taken as
the (near-)optimal value.

Vehicle Routing Problem with Time Windows The Vehicle Routing Problem with Time Win-
dows (VRPTW) (Chen et al., 2025) aims to find a set of minimum-distance vehicle routes that start
and end at a single depot, visiting each customer exactly once within its prescribed time window,
while respecting vehicle-capacity and route-duration limits. Two benchmark suites are employed:
64 VRPTW-50 instances and 64 VRPTW-100 instances. For every instance, customer coordinates
are uniformly sampled from [0, 1]2, integer demands are drawn from {1, . . . , 9} (depot demand is
0), and vehicle capacity is fixed at 40. Service times are sampled from U(0.15, 0.2), time-window
lengths from U(0.15, 0.2), and early-time values are randomly scaled so that all windows lie within
the horizon [0, 4.6]. The negative of the total route distance is used as the fitness value. The average
distance of the solutions produced by the HGS (Vidal, 2020) is taken as the (near-)optimal value.

Job Shop Scheduling Problem The Job Shop Scheduling Problem (JSSP) (Xiong et al., 2022)
seeks a non-preemptive assignment of operations to machines that minimizes the makespan, i.e. the
maximum completion time over all jobs. Each job consists of a fixed sequence of operations, each
of which must be processed on a pre-specified machine for a given duration, and no machine can
process more than one operation at a time. The evaluation process is conducted on a set of 10 JSSP
instances selected from the Taillard benchmark suite(Taillard, 1993), each containing 50 jobs and 10
machines. Processing times and machine routing are read from the corresponding ta51–ta60 files;
these values are deterministic and publicly available. The negative of the obtained makespan is used
as the fitness value.

Capacitated Facility Location Problem The Capacitated Facility Location Problem
(CFLP) (Zhang & Kalcsics, 2025) aims to select a subset of facilities to open and assign
each customer to exactly one open facility so that the total cost, comprising fixed opening costs
(here folded into assignment costs) and variable serving costs, is minimized while respecting the
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capacity limit of every facility. The evaluation process is conducted on a set of 16 CFLP-50 in-
stances. For every instance, facility capacities are uniformly sampled from {5, . . . , 100}, customer
demands from {5, . . . , 20}, and assignment costs from {5, . . . , 50}. The negative of the total cost
of a feasible assignment is used as the fitness value.

Multiple Knapsack Problem The Multidimensional Knapsack Problem (MKP) (Puchinger et al.,
2010) aims to select a subset of items that maximizes the total profit while respecting multiple
resource constraints, each of which is normalized to a unit capacity. The evaluation process is
conducted on three benchmark suites: 64 MKP-100, 64 MKP-200, and 64 MKP-300 instances. For
every instance, item profits are uniformly sampled from [0, 1], the 5-dimensional weight matrix is
drawn from U(0, 1) and then row-wise normalized so that the sum of weights along each constraint
dimension equals 1. The negative of the total profit of the selected items is used as the fitness value.

Maximum Admissible Set Problem The Maximum Admissible Set Problem (MASP) (Du et al.,
2025) seeks the largest symmetric constant weight admissible set I(n,w), a collection of n di-
mensional vectors over {0, 1, 2} with fixed Hamming weight w that avoids specified forbidden
triple wise patterns. The heuristic search process is conducted on four ASP suites with parame-
ters {n = 12, w = 7}, {n = 15, w = 10}, {n = 21, w = 15}, {n = 24, w = 17}, each containing
64 instances generated by a Taillard style expand and filter routine using seed 2024(Taillard, 1993).
Candidate vectors are grouped into n

3 triples, rotated and filtered against the forbidden triple list,
then the surviving set is greedily grown under a learned priority function.

A.2 OTHER OPTIMIZATION TASKS

A.2.1 MACHINE LEARNING CATEGORY

Acrobot Problem The Acrobot Control Problem (Sengupta et al., 2019) requires learning a policy
that swings a two-link robotic arm upward so that the upper link reaches a target height. It is a clas-
sical benchmark in reinforcement learning and control, widely used to evaluate heuristic methods.
In our experiments, we adopt the OpenAI Gym implementation (Brockman et al., 2016) with a fixed
episode horizon. At each step, the heuristic determines an action from the observed system state.
Performance is assessed by a fitness-based metric that may include additional penalties when the
task is not accomplished. Effective heuristics achieve the goal with reduced oscillations and control
effort. In the experiments, we set the maximum number of steps to 500.

Mountain Car Problem The Mountain Car Problem (Sutton, 1995) requires designing a control
policy for an underpowered car to reach the top of a steep hill. It is a widely used benchmark
in reinforcement learning and heuristic design. Experiments are conducted in the OpenAI Gym
environment (Brockman et al., 2016) with a fixed episode horizon. At each step, the heuristic selects
an action from the observed system state. Performance is evaluated through a fitness-based metric
that rewards reaching the goal efficiently while penalizing failure or excessive oscillations. In the
experiments, we set the maximum number of steps to 500.

A.2.2 SCIENCE DISCOVERY CATEGORY

Bacterial Growth Modeling Problem The Bacterial Growth Modeling Problem (Monod, 2012)
aims to identify a parameterized function that predicts Escherichia coli growth rates based on en-
vironmental and population factors. It is employed as a benchmark for heuristic and algorithmic
model discovery. Heuristic search is conducted on observational datasets, with candidate functions
optimized to minimize prediction error. Evaluation is based on the negative mean squared error
(MSE), with optimal solutions achieving accurate and generalizable fits across varying conditions.

Feynman SRSD The Feynman Symbolic Regression Problem (Udrescu & Tegmark, 2020) aims
to discover mathematical expressions that accurately capture relationships in sampled datasets de-
rived from Feynman equations. It is a standard benchmark for symbolic regression and automated
equation discovery. Candidate functions are optimized to minimize the MSE between predicted and
observed outputs, with invalid results discarded. Optimal solutions correspond to expressions that
generalize well while achieving high predictive accuracy. The FeynmanEvaluation class encapsu-
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lates the evaluation process, enabling configuration of runtime constraints and dataset sampling, and
assesses candidate equations through parameter optimization.

Oscillator Problem The Damped Nonlinear Oscillator Function Discovery Problem (DNOFDP)
aims to recover the underlying acceleration function of a damped nonlinear oscillator with driving
force from observed trajectories. As a canonical benchmark in system identification and physics-
informed modeling, it evaluates the ability of heuristic and symbolic regression methods to capture
nonlinear dynamics. Candidate functions are optimized to minimize prediction error on observed
data, with robust evaluation ensuring invalid results are excluded. Optimal solutions accurately
reproduce oscillator dynamics while maintaining generalization.

Circle Packing The Circle Packing Problem (CPP) seeks to arrange n non-overlapping circles
within a unit square to maximize an objective such as the sum of radii or packing density. As a clas-
sical combinatorial and geometric optimization problem, CPP is challenging due to its continuous,
high-dimensional search space and strict non-overlap constraints. Heuristic approaches typically
place circles iteratively, using constructive or grid-based methods, ensuring each new circle max-
imizes space utilization while avoiding overlaps. Deterministic evaluation is ensured by fixing all
random seeds across relevant libraries. CPP serves as both a benchmark for optimization heuristics
and a study case for spatial packing efficiency.

B DEFINITION OF GENERAL HEURISTIC FRAMEWORKS

To address NP-hard COPs, we utilize the TPD-AHD method to design key functions within a general
heuristic framework. To demonstrate the framework-agnostic nature of TPD-AHD, our experiments
incorporate two widely used COP frameworks: constructive methods and ant colony optimization
(ACO). Below, we provide a detailed exposition of them.

B.1 STEP-BY-STEP CONSTRUCTION FRAMEWORK

The constructive method is a versatile framework capable of addressing a wide range of COPs. It
incrementally extends an initial solution (or multiple solutions) of an NP-hard COPs until a complete
and feasible solution is formed. At each step of the construction process, the framework assigns a
priority to each candidate variable (decision variable), and the candidate with the highest priority is
incorporated into the current solution.

Within the constructive framework, both TPD-AHD and the LLM-based AHD baseline employ the
same key heuristic function, which is repeatedly executed to compute the priorities of candidate
nodes. In this study, the constructive framework is applied to solve several COPs, including the
Traveling Salesman Problem (TSP), Multiple Knapsack Problem (MKP), and Maximum Admissible
Set Problem (MASP). The specific configuration of the key heuristic function within the constructive
framework is as follows:

• TSP and Vehicle Routing Problems (VRPs): TPD-AHD designs a function that selects
the next node to visit based on node coordinates, the starting point, the distance matrix, and
all unvisited nodes.

• Job Shop Scheduling Problem (JSSP): TPD-AHD designs a function that selects the
next operation to schedule based on the current status of machines and jobs, as well as all
feasible operations, each specified by a job ID, machine ID, and processing time.

• Capacitated Facility Location Problem (CFLP): TPD-AHD designs a function that se-
lects the next customer from all unassigned customers and assigns them to a facility with
sufficient capacity and the lowest assignment cost, based on the current facility capacities,
customer demands, existing assignments, and assignment costs.

B.2 ANT COLONY OPTIMIZATION FRAMEWORK

ACO is a meta-heuristic evolutionary algorithm inspired by the foraging behavior of ants, designed
to find high-quality solutions for combinatorial optimization problems. ACO guides solution con-
struction by maintaining a pheromone matrix τ and a heuristic matrix η. Each element τij in the
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pheromone matrix represents the priority of including edge (i, j) in a solution, and the pheromone
trails are iteratively updated based on the quality of the solutions found, encouraging subsequent
ants to follow better paths. The heuristic information ηij is a problem-specific measure reflecting
the immediate benefit of choosing a particular path. For example, when solving the TSP, a manually
designed heuristic matrix often sets ηij as the inverse of the distance between cities i and j, i.e.,
ηij = 1/dij , whereas LLM-based AHD methods can leverage problem-specific inputs to design a
more effective heuristic matrix η.

During solution construction, ants move from node to node, probabilistically selecting the next node
based on a combination of pheromone and heuristic information. After all ants have constructed
their solutions, the pheromone levels are updated. A typical ACO iteration consists of solution
construction, optional local search, and pheromone update. By iteratively applying these steps,
ACO algorithms can efficiently explore the solution space and gradually converge toward optimal or
near-optimal solutions for NP-hard COPs. In this study, following the settings of Ye et al. (2024), we
evaluate TPD-AHD by designing heuristic metric generation functions for TSP, CVRP, and MKP.

• TSP: The function requires the distance matrix as input. The number of ants is set to 30,
and the number of iterations is set to 100 during the heuristic evaluation phase. In testing,
the number of iterations is increased to 500.

• CVRP: The input function takes the distance matrix, node coordinates, customer demands,
and vehicle capacity C. The number of ants and iterations are the same as for TSP.

• MKP: The function takes item values and weights as input. The number of ants is set to
10, with 50 iterations during evaluation on the dataset D and 100 iterations on the test set.

B.3 RANDOM INSERTION FRAMEWORK (SELECTING THE NEXT CITY)

The random insertion method is a classical constructive framework widely used for solving routing
problems such as the Traveling Salesman Problem (TSP). Starting from an initial small tour, the
framework incrementally expands the solution by repeatedly inserting one unvisited city into the
current partial tour. During each iteration, the framework evaluates all candidate cities that have not
yet been included, assigns a priority to each based on the current state of the partial tour, and selects
one city to be inserted next.

Within this random insertion framework, both TPD-AHD and the LLM-based AHD baseline employ
the same core heuristic component for determining which city should be inserted at each construc-
tion step. This heuristic is invoked repeatedly to assess and rank candidate cities according to their
relevance to the evolving tour, ensuring that the insertion process remains guided and adaptive rather
than arbitrary. In our study, the random insertion framework provides the foundation for evaluating
learned heuristics on the TSP, enabling a consistent and controlled environment for analyzing the
quality of different city-selection strategies. This newly designed framework is employed in TPD-
AHD for solving the Traveling Salesman Problem (TSP). For specific heuristic templates, refer to
the Appendix C.

C FURTHER DETAILS OF EVALUATIONS AND EXPERIMENTS

C.1 DETAILS OF EVALUATIONS

This section details the configuration of the evaluation budget T and the evaluation dataset D used
in the heuristic assessment phase. The evaluation protocol adopted in this work is primarily based
on the methodologies proposed in Funsearch, EoH, ReEvo, and MCTS-AHD.

Configuration of T . In EoH, the setting is 20 generations with a population size of 10 for TSP and
JSSP. Accordingly, this work designs a comparable scheme for the maximum number of evaluations
T : TPD-AHD adopts the same settings as EoH, while the maximum iteration numbers for the other
methods (Funsearch, ReEvo, and MCTS-AHD) are set to 200.

Configuration of D. For most tasks considered, TPD-AHD uses the same evaluation dataset D
as the LLM-based baseline methods (e.g., EoH, ReEvo, Funsearch, MCTS-AHD). Additionally, for

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Comparative analysis of evolutionary characteristics in LLM-AHD methods.

EoH ReEvo HsEvo MCTS LLM-LNS TPD-AHD

Clear direction ✗ ✓ ✓ ✓ ✓ ✓

Explainable trajectory ✗ ✗ ✗ ✓ ✗ ✓

Reflection mechanism ✗ ✓ ✓ ✗ ✓ ✓

Table 6: Detailed results of various optimization tasks. Several NP-hard COPs, machine learning
problems, and scientific discovery problems are presented in this table. Each LLM-AHD method is
executed three times for each problem, and the average value is reported.

Task Classic NP-hard COPs Machine Learning Science Discovery
Method CFLP OVRP VRPTW MASP Acrobot Mountain Car Bactgrow Feyman SRSD Oscillator Circle Packing

(near-)Optimal Obj. ↓ Obj. ↓ Obj. ↓ Obj. ↓ Obj. ↓ Obj. ↓ Obj.↓ Obj. ↓ Obj. ↓ Obj. ↑

Funsearch
278.06 12.52 32.47 228 0.13 0.17 0.011 14.392 4.1E-04 -
5.00 12.68 32.47 927 0.14 0.02 0.015 0.089 4.1E-04 -

277.38 12.59 32.47 249 0.17 0.31 0.015 0 .002 4.1E-08 -
Average 186.81 12.60 32.47 468 0.15 0.16 0.014 4.828 2.7E-04 -

EoH
13.94 12.69 20.48 273 0.13 0.29 0.005 0.003 4.6E-08 1.93
12.31 12.66 19.91 336 0.15 0.02 0.021 0.011 4.4E-08 2.20

277.13 12.41 20.12 885 0.15 0.23 0.002 0.002 4.1E-04 2.19
Average 101.13 12.59 20.17 498 0.14 0.18 0.009 0.005 9.6E-06 2.11

ReEvo
192.69 12.18 20.12 963 0.25 0.17 0.003 0.041 1.2E-06 2.12
277.38 12.00 19.98 1161 0.26 1.71 0.001 0.021 9.9E-08 2.39
77.06 12.44 20.29 1194 0.14 0.17 0.002 0.057 1.3E-06 1.96

Average 182.38 12.21 20.13 1106 0.22 0.68 0.002 0.040 8.7E-07 2.16

TPD-AHD
107.94 11.97 19.98 258 0.13 0.17 0.005 0.002 3.9E-08 2.52
93.06 11.87 19.98 237 0.15 0.01 0.005 0.037 5.0E-08 2.42
5.00 12.17 19.91 237 0.14 0.27 0.005 0.016 1.1E-09 2.27

Average 68.67 12.00 19.96 244 0.14 0.15 0.005 0.019 3.0E-08 2.40

certain problems and for experimental convenience, we conduct experiments based on the default
settings of the LLM4AD platform.

Comparison of Evolutionary Features. Table 5 presents a detailed comparison of several rep-
resentative methods in the LLM-AHD and TPD-AHD frameworks in terms of their evolutionary
characteristics. Specifically, the comparison considers three key aspects: the presence of a clear evo-
lution direction, the explainability of the evolutionary trajectory, and the incorporation of a reflection
mechanism. As shown in the table, while methods such as ReEvo, HsEvo, MCTS, and LLM-LNS
exhibit a clear direction in their evolutionary process, only TPD-AHD consistently combines a clear
direction with both an explainable trajectory and a reflection mechanism. This highlights TPD-
AHD’s advantage in providing more interpretable and guided evolutionary behavior compared to
other methods.

C.2 ADDITIONAL RESULTS OF VARIOUS OPTIMIZATION TASKS

Table 6 presents the performance of different LLM-AHD methods on additional optimization tasks
not detailed in the main text. These tasks are categorized into three main groups: Classic NP-hard
Combinatorial Optimization Problems (COPs), Machine Learning, and Science Discovery. The
table includes a total of 10 problems, each evaluated based on their respective performance metrics.

Across these diverse tasks, TPD-AHD consistently demonstrates superior performance, achieving
the best results in 8 out of the 10 problems. Even in the Bacterial Growth Modeling (Bactgrow) and
Feynman Symbolic Regression and Symbolic Discovery (Feynman SRSD) problems, where TPD-
AHD does not secure the highest score, it ranks second, just one position below the top performer.
This consistent near-optimal performance underscores the robustness and versatility of TPD-AHD
across a wide range of optimization tasks, highlighting its potential for broad applicability in various
domains.

In addition, we conducted supplementary experiments under the newly constructed Random Inser-
tion framework. As presented in Table 7, these experiments were performed on the TSP50 dataset
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Figure 4: Comparative convergence analysis of TPD-AHD against baseline LLM-AHD methods
(TSP Random Insertion tasks). Results show mean performance (solid lines) with standard devi-
ation (shaded regions) across three independent runs. Left (Non-fixed initial points): Heuristic
generation without fixed initial points, i.e., no manually designed heuristic templates are provided
when sampling initial candidate solutions. Right (Fixed initial points): Heuristic generation with
fixed initial points, i.e., simple manually designed heuristic templates are provided when sampling
initial candidate solutions.

Table 7: Performance of LLM-based AHD methods on TSP50 using the Random Insertion frame-
work. Results are averaged across 500 instances per test set over three runs. S2 is the sample
variance of the experimental results. In addition, the average token usage and average time cost of
the LLM are also reported.

Task TSP50
Method run1 run2 run3 Avg.↓ Gap↓ % S2 Token Time(s)

(near-)Optimal - - - 5.71 - - - -
Random Insertion - - - 6.15 7.57 - - -

LLM Model: DeepSeek-Chat
EoH 5.99 6.01 5.97 5.99 4.84 4.2E-04 263644 5011

ReEvo 5.99 5.86 5.97 5.94 4.01 4.6E-03 729365 6599
MCTS-AHD 6.16 6.17 6.17 6.17 7.93 1.3E-05 604309 5760
TPD-AHD 5.97 5.96 5.87 5.94 3.89 3.0E-03 814997 7348

LLM Model: GPT-4o-Mini
EoH 6.00 5.99 5.98 5.99 4.90 8.4E-05 190689 2819

ReEvo 5.96 5.97 6.06 6.00 4.93 3.2E-03 463090 4210
MCTS-AHD 6.09 6.16 6.13 6.12 7.20 1.3E-03 474826 5220
TPD-AHD 5.96 5.94 5.97 5.95 4.19 2.4E-04 567820 5543

LLM Model: Qwen-plus
EoH 5.99 5.99 5.98 5.99 4.82 3.0E-03 214466 5660

ReEvo 6.15 6.10 5.97 6.07 6.30 8.2E-03 825066 7251
MCTS-AHD 6.23 6.17 6.13 6.18 8.10 2.5E-03 722025 5460
TPD-AHD 5.96 5.90 6.00 5.95 4.20 2.3E-03 871175 8033

LLM Model: llama3-8b-instruct
EoH 5.96 6.06 6.05 6.02 5.45 3.0E-03 184574 3085

ReEvo 5.95 6.08 6.00 6.01 5.19 4.6E-03 503741 6131
MCTS-AHD 6.09 6.13 6.09 6.10 6.80 4.4E-04 462809 4856
TPD-AHD 5.89 6.00 5.96 5.95 4.15 2.7E-03 604309 6756

consisting of 500 instances, focusing on the task of designing heuristic operators for city selection in
the Random Insertion method. Specifically, each baseline method was executed three times across
different LLMs. We compared the results of the three runs and reported key metrics including the
mean, gap and sample variance S2. Additionally, the average token consumption and time cost
across the three runs are provided.

To further investigate the stability of TPD-AHD and each baseline method, we conducted an addi-
tional 10 runs (building on the 3 runs of the aforementioned RI framework) on the TSP50 dataset
(500 instances) using GPT-4o-Mini. The results are presented in Table 8. From the results in the
table, it can be observed that under this experimental setup, TPD-AHD achieved the optimal perfor-
mance in 8 out of 10 runs. Moreover, both the average value and gap across the 10 runs remained op-
timal for TPD-AHD. Additionally, the sample variance of TPD-AHD is second only to that of EoH.
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Table 8: Performance of LLM-based AHD methods on TSP50 using the Random Insertion frame-
work. Results are averaged across 500 instances per test set over ten runs. S2 is the sample variance
of the experimental results.

Task TSP50
Method run1 run2 run3 run4 run5 run6 run7 run8 run9 run10 Avg.↓ Gap↓ % S2

(near-)Optimal - - - - - - - - - - 5.71 0.00 -
Random Insertion - - - - - - - - - - 6.15 7.57 -

LLM Model: GPT-4o-Mini
EoH 6.00 5.99 5.98 6.00 5.97 5.99 5.99 5.98 5.96 6.06 5.99 4.90 7.3E-04

ReEvo 5.96 5.97 6.06 6.06 5.99 5.86 5.97 5.97 5.95 6.00 5.98 4.66 3.2E-03
MCTS-AHD 6.20 6.13 6.09 6.17 6.17 6.17 6.20 6.16 6.17 6.16 6.16 7.83 1.1E-03
TPD-AHD 5.96 5.94 5.97 5.96 5.96 5.97 5.96 5.87 5.98 5.96 5.95 4.18 9.1E-04

In summary, TPD-AHD exhibits excellent performance and stability among the existing LLM-AHD
methods.

We also evaluated the acquired TSP Random Insertion heuristic on datasets from TSPLIB, with the
results presented in Table 9. The findings demonstrate that the heuristic designed by TPD-AHD
maintains favorable performance on this category of real-world datasets and achieves the lowest
average gap among the tested instances.

Table 9: The results of TSP Random Insertion heuristic on selected datasets from TSPLIB. The
LLM-AHD heuristics used for testing are the optimal ones generated under the TSP Random Inser-
tion framework for each method. Each heuristic is run 10 times, with the average value taken as the
final result. The optimal LLM-AHD results are marked with lightgray shading, and the suboptimal
ones with bold black font.

TSPLIB Optimal Concorde Random Insertion EoH ReEvo MCTS-AHD TPD-AHD
Instance Obj.↓ Obj.↓ Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ %
berlin52 7542 7542 7886 4.56 8049 6.72 8006 6.15 8369 10.97 7922 5.04
bier127 118282 118282 132490 12.01 126767 7.17 123797 4.66 133833 13.15 124335 5.12
ch130 6110 6110 6497 6.33 6496 6.32 6447 5.52 6920 13.26 6376 4.35
eil76 538 538 601 11.71 583 8.36 566 5.2 603 12.08 566 5.2
eil101 629 629 705 12.08 676 7.47 672 6.84 703 11.76 661 5.09

kroA100 21282 21282 22392 5.22 22387 5.19 21581 1.4 23664 11.19 21639 1.68
kroA150 26524 26524 28624 7.92 28403 7.08 27636 4.19 29628 11.7 27793 4.78
kroA200 29368 29368 31825 8.37 31564 7.48 31066 5.78 33689 14.71 30799 4.87
kroB100 22141 22140 24634 11.26 23038 4.05 23029 4.01 24308 9.79 23184 4.62
kroB150 26130 26131 27416 4.92 28034 7.29 27331 4.6 28681 9.76 26871 2.84
kroB200 29437 29437 32921 11.84 31490 6.97 30762 4.5 33315 13.17 31000 5.31
kroC100 20749 20749 21767 4.91 21917 5.63 21400 3.14 22610 8.97 21052 1.46
kroD100 21294 21294 23398 9.88 22391 5.15 22169 4.11 23182 8.87 22167 4.1
kroE100 22068 22068 23789 7.80 23012 4.28 22899 3.77 23939 8.48 22717 2.94
lin105 14379 14379 18097 25.86 15571 8.29 14839 3.2 15642 8.78 14884 3.51
pr76 108159 108159 128999 19.27 112610 4.12 113335 4.79 115320 6.62 111968 3.52

pr107 44303 44303 51795 16.91 45000 1.57 45031 1.64 46681 5.37 44980 1.53
rat99 1211 1211 1600 32.12 1314 8.51 1292 6.69 1346 11.15 1291 6.61

rat195 2323 2323 3069 32.11 2587 11.36 2531 8.95 2726 17.35 2554 9.94
rd100 7910 7910 8884 12.31 8373 5.85 8298 4.91 8694 9.91 8275 4.61
st70 675 675 707 4.74 713 5.63 700 3.7 740 9.63 700 3.7
u159 42080 42080 52858 25.61 46056 9.45 44397 5.51 48559 15.4 44365 5.43
Avg. 26051.55 26051.54 29588.82 13.08 27592.32 6.54 27172.00 4.69 28779.64 11.00 27094.50 4.38

Additionally, the instances from VRPLIB were utilized to evaluate the performance of various base-
line methods of LLM-AHD in generating heuristics under the CVRP ACO framework, with the re-
sults reported in Table 10. The findings indicate that TPD-AHD also achieves favorable performance
across most instances, demonstrating the lowest average gap and the best overall performance.

C.3 ADDITIONAL DETAILS ABOUT ABLATION STUDY

To systematically evaluate the contributions of individual components in TPD-AHD, we conducted
ablation experiments targeting its two core modules, resulting in five variants. The first three vari-
ants focused on the optimal anchoring pairing mechanism, while the last two targeted the textual
differentiation mechanism. These experiments allowed us to assess the impact of each component
on the overall performance of TPD-AHD.
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Table 10: The results of CVRP heuristics on CVRP-A datasets from CVRPLIB. The heuristics
include EoH, ReEvo, MCTS-ACO, and TPD. Each heuristic is run 10 times, with the average value
taken as the final result. The optimal results are marked with lightgray shading, and the suboptimal
ones with bold black font.

TSPLIB Optimal EoH ReEvo MCTS-ACO TPD
Instance Obj.↓ Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ % Obj.↓ Gap↓ %

A-n32-k5 784 906 15.56 1753 123.60 929 18.49 905 15.43
A-n33-k5 661 734 11.04 1389 110.14 773 16.94 728 10.14
A-n33-k6 742 847 14.15 1438 93.80 870 17.25 814 9.70
A-n34-k5 778 899 15.55 1624 108.74 929 19.41 852 9.51
A-n36-k5 799 972 21.65 1768 121.28 947 18.52 943 18.02
A-n37-k5 669 889 32.88 1614 141.26 858 28.25 816 21.97
A-n37-k6 949 1160 22.23 1851 95.05 1147 20.86 1120 18.02
A-n38-k5 730 902 23.56 1724 136.16 900 23.29 833 14.11
A-n39-k5 822 1022 24.33 1826 122.14 1066 29.68 958 16.55
A-n39-k6 831 1056 27.08 1893 127.80 1052 26.59 1026 23.47
A-n44-k6 937 1220 30.20 2061 119.96 1255 33.94 1154 23.16
A-n45-k6 944 1204 27.54 2385 152.65 1208 27.97 1119 18.54
A-n45-k7 1146 1436 25.31 2313 101.83 1474 28.62 1410 23.04
A-n46-k7 914 1180 29.10 2198 140.48 1199 31.18 1096 19.91
A-n48-k7 1073 1411 31.50 2576 140.07 1426 32.90 1389 29.45
A-n53-k7 1010 1408 39.41 2682 165.54 1437 42.28 1276 26.34
A-n54-k7 1167 1469 25.88 2845 143.79 1550 32.82 1456 24.76
A-n55-k9 1073 1399 30.38 2662 148.09 1456 35.69 1375 28.15
A-n60-k9 1354 1799 32.87 3262 140.92 1806 33.38 1761 30.06
A-n61-k9 1034 1436 38.88 2710 162.09 1470 42.17 1351 30.66
A-n62-k8 1288 1736 34.78 3278 154.50 1781 38.28 1733 34.55
A-n63-k10 1616 1765 9.22 3061 89.42 1736 7.43 1732 7.18
A-n63-k9 1314 2120 61.34 3811 190.03 2165 64.76 2134 62.40
A-n64-k9 1401 1927 37.54 3313 136.47 1973 40.83 1865 33.12
A-n65-k9 1174 1574 34.07 3375 187.48 1681 43.19 1541 31.26
A-n69-k9 1159 1683 45.21 3444 197.15 1724 48.75 1543 33.13
A-n80-k10 1763 2469 40.05 4502 155.36 2577 46.17 2502 41.92

Avg. 1141.93 1356.41 28.94 2494.74 137.25 1384.78 31.47 1312.30 24.24

TPD-p1: Replaces the optimal anchoring pairing with a best-worst binary pairing strategy. This
variant iteratively generates new heuristics to compare their performance with the original scheme,
evaluating the impact of using a simpler binary comparison. In this variant, only the logic for
selecting heuristics from the solution pool is modified, while all other aspects remain unchanged. In
this variant, only the logic for selecting heuristics from the solution pool is modified, while all other
aspects remain unchanged.

TPD-p2: Uses only the current best heuristic as the reference for all comparisons. This variant
examines the effect of a single-best preference on heuristic quality, assessing whether focusing solely
on the best heuristic improves performance. Since the pairing mechanism was removed, the prompt
for the text loss has been modified as shown in Figure 5.

TPD-p3: Employs a score-weighted random pairing strategy, selecting heuristics probabilistically
based on their performance scores. This variant evaluates the effectiveness of stochastic pairing in
maintaining diversity while still guiding optimization. In this variant, only the logic for selecting
heuristics from the candidate solution pool is modified, while everything else remains the same.

TPD-g1: Retains the optimal anchoring pairing but replaces the customized textual differentiation
module with the native TEXTGRAD module. This variant quantifies the gains from using a special-

'''You are a code evaluation expert. Your task is to evaluate a piece of code by providing an assessment and 

analyzing two advantages and two disadvantages of the code.

**Code**:

{chosen_code}

I hope you can provide evaluations as much as possible from the perspective of the code's running logic and the 

algorithm itself, rather than always being confined to the superficial content of the code.'''

Prompt of TPD-p2

Figure 5: The prompt of TPD-p2.
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"""You are tasked with optimizing the following code based on the chchosen_code and rejected_code.

Please strictly follow the template to generate code; nested functions within a function are not allowed.

**Task Description**:

{task_prompt}

**Template Function**:

{str(temp_func)}

**Chosen Code**:

{chosen_code}

**Rejected Code**:

{rejected_code}

Please strictly follow the template function and don't use any other Python libraries except numpy! You don't need to 

generate anything other than the code. No need to add comments to the code."""

Prompt of Constraint (TPD-g1)

Figure 6: The constraint prompt of TPD-g1.

'''You are a language model tasked with evaluating a chosen code by comparing it with a rejected code to a task. 

Analyze the two strongest advantages of the chosen code, and the two most significant weaknesses of the rejected code. 

Finally, explain why one is chosen or rejected in concise language.

**Task Description**:

{task_prompt}

**Rejected Code**:

{rejected_code}

I hope you can provide evaluations as much as possible from the perspective of the code's running logic and the 

algorithm itself, rather than always being confined to the superficial content of the code.'''

Prompt of Loss (TPD-g1)

Figure 7: The loss prompt of TPD-g1.

ized textual differentiation mechanism tailored for heuristic optimization. In this variant, in addition
to modifying the framework components related to TEXTGRAD, the prompts are also adjusted, with
the constraint prompt and text loss prompt shown in Figures 6 and 7.

TPD-g2: Retains the optimal anchoring pairing while completely removing the textual differen-
tiation mechanism, omitting any textual loss or gradient propagation. This variant assesses the
necessity of textual loss signals and gradients for effective heuristic optimization. Since this variant
does not use the text differentiation mechanism, we retain the forward-propagation part of the loss
while removing the text gradient prompts for backpropagation. The variables are fixed to prevent
the effects of changes in the best-anchoring method, and the prompts are shown in Figure 8.

"""You are tasked with optimizing the following code based on the chchosen_code and rejected_code.

Please strictly follow the template to generate code; nested functions within a function are not allowed.

**Task Description**:

{task_prompt}

**Template Function**:

{str(temp_func)}

**Chosen Code**:

{chosen_code}

**Rejected Code**:

{rejected_code}

Please strictly follow the template function and don't use any other Python libraries except numpy! You don't need to 

generate anything other than the code. No need to add comments to the code."""

Prompt of TPD-g2

Figure 8: The prompt of TPD-g2.
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Figure 9: Convergence curves and boxplots of various ablation variants of TPD-AHD, with each
variant run three times independently, under the GPT-4o-mini model within the TSP Random Inser-
tion framework.

Our experiments revealed that setting the temperature parameter to 1.0 optimally balances explo-
ration and exploitation, accommodating both solution diversity and the pursuit of optimal solutions.
Additionally, we found that a moderate candidate pool size of 10 yields the best performance. This
is likely because a moderate pool size balances diversity and reliability: it reduces evaluation noise,
concentrates gradient signals, and enables efficient convergence within the given iteration budget.
This finding aligns with observations in other LLM-guided heuristic optimization frameworks, sug-
gesting an interaction between pool size and the effectiveness of preference-based selection.

According to the results in Figure 9 and Table 11, TPD-AHD—with its combination of high-quality
anchored preference pairs and a domain-specialized text-gradient mechanism—achieves the best
overall performance, followed by TPD-AHD-p1, TPD-AHD-p3, TPD-AHD-p2, TPD-AHD-g1, and
finally TPD-AHD-g2. This ordering reflects the strength and clarity of the learning signal: deliber-
ately constructed best–worst comparisons (TPD-AHD-p1) provide more informative guidance than
using only the best samples (TPD-AHD-p2), whereas random pairing (TPD-AHD-p3) introduces
substantial noise; the non-specialized TEXTGRAD used in TPD-AHD-g1 further dilutes useful in-
formation, and TPD-AHD-g2, which lacks gradient-based updates, shows the weakest capacity for
improvement.

In terms of stability, the ranking from most to least stable is: TPD-AHD > TPD-AHD-g2 > TPD-
AHD-p2 > TPD-AHD-p1 > TPD-AHD-g1 > TPD-AHD-p3. TPD-AHD maintains both strong
performance and good stability due to its specific design, whereas the apparent stability of TPD-
AHD-g2 arises merely from the absence of learning dynamics, which limits variability. Variants that
incorporate noisy or misaligned signals—particularly the random pairing in TPD-AHD-p3, exhibit
the highest variance.

In addition, Table 11 reports the LLM token usage and runtime cost of each TPD-AHD ablation
variant. We observe that TPD-AHD-g1 (best anchoring + vanilla TextGrad) exhibits the highest
token consumption. This is because the original TextGrad framework is not tailored for LLM-AHD
tasks, leading to substantial redundant informational noise that increases LLM token usage and
ultimately degrades performance. In contrast, TPD-AHD-g2 (which uses only best anchoring) incurs
the lowest token cost, as it does not employ any text-gradient mechanism and therefore requires
minimal computational resources; however, its performance is also the worst among all variants.

In summary, our ablation studies confirm that the Best-Anchoring pairing and the customized textual
differentiation mechanism are critical components of TPD-AHD. These components work synergis-
tically to enhance the framework’s ability to generate high-quality heuristics efficiently.
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Table 11: The performance, gap, sample variance, token consumption, and time cost of various
ablation variants of TPD-AHD on the TSP50 problem under the TSP Random Insertion framework.

Task TSP50
Method run1 run2 run3 Avg.↓ Gap↓ % S2 Token Time(s)

(near-)Optimal - - - 5.71 - - - -
Random Insertion - - - 6.15 7.57 - - -

LLM Model: GPT-4o-Mini
TPD-AHD 5.96 5.97 5.94 5.95 4.19 2.4E-04 567820 5543

TPD-AHD-p1 5.99 5.97 6.06 6.01 5.12 2.0E-03 632101 6058.21
TPD-AHD-p2 5.99 6.03 6.00 6.01 5.14 3.6E-04 497200 4210
TPD-AHD-p3 6.10 5.98 5.94 6.00 5.08 7.1E-03 594323 5606
TPD-AHD-g1 6.02 6.10 5.99 6.03 5.63 1.3E-03 968617 6732.26
TPD-AHD-g2 6.06 6.07 6.02 6.05 7.50 1.3E-03 323915 3076
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Figure 10: The convergence comparison of four algorithms TPD-AHD, EoH, ReEvo and MCTS
for TSP random insertion over 10 independent runs, with two subfigures. Left for non-fixed start
and right for fixed start. Colored boxes denote interquartile ranges, thick white lines inside are
medians, and solid lines with white markers above are median trajectories. Algorithms are color-
distinguished, with legends at the bottom right of each subfigure.

C.4 ANALYSIS OF CONVERGENCE AND STABILITY OF VARIOUS BASELINE METHODS

Theoretical convergence guarantees remain an open challenge for the broader field of LLM-AHD.
Existing approaches, including FunSearch, EoH, ReEvo, and MCTS-AHD—operate within LLM-
driven search spaces, where the inherent non-determinism of LLM reasoning prevents the establish-
ment of strict convergence guarantees. Our proposed TPD-AHD shares this fundamental limitation;
however, its optimization process is strengthened by the introduction of structured preference sig-
nals.

Specifically, the textual gradient mechanism provides a more directional and interpretable optimiza-
tion signal compared with purely sampling-driven evolutionary procedures. By anchoring updates
to explicit preference information, this mechanism reduces the search noise typically introduced
by low-quality heuristic candidates and empirically enhances the stability of the evolution process.
Moreover, the best-anchored preference pairing scheme further consolidates this effect by consis-
tently comparing newly generated heuristics against the current best-performing one, thus preserving
a stable reference direction throughout the optimization. Ablation results in Table 4 and Table 11
verify that removing this component leads to clear performance degradation.

To further investigate convergence behavior and method-level stability, we conducted ten additional
runs on the TSP50 dataset (500 instances) using GPT-4o-Mini, building on the three runs already
included in the RI framework. Table 8 summarizes the results. Under this experimental setting,
TPD-AHD achieves the best performance in eight out of 10 runs, and both its mean performance
and average optimality gap remain superior to those of all baselines. The sample variance of TPD-
AHD is second only to that of EoH, indicating a high degree of run-to-run stability.
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Figure 11: The convergence curves of four algorithms (TPD-AHD, EoH, ReEvo, and MCTS) on
the TSP random insertion problem, based on 3 independent runs (each run iterates 1000 times to
generate 1000 heuristics).

We also plot convergence curves over the ten runs (Figure 10). The curves show that TPD-AHD
exhibits a rapid performance improvement trend and ultimately attains the best overall solution
quality among all compared methods. Its variance across iterations remains consistently low, further
demonstrating its stable optimization trajectory.

Convergence performance comparison of four algorithms TPD-AHD, EoH, ReEvo and MCTS for
the TSP random insertion problem over 10 independent runs (Figure 10), including two subfigures.
The left subfigure is for non-fixed start and the right one for fixed start. The x-axis is the Heuristic
Index ranging from 10 to 200 with a step of 10, and the y-axis is the Objective Value. For each index,
the colored box represents the interquartile range of the 10 runs, the thick white line inside the box
is the median, and the colored solid line with white-filled circular markers above the boxes shows
the median trajectory, illustrating the algorithms’ convergence trends with heuristic iterations. The
four algorithms are distinguished by distinct colors, with the legend placed at the bottom right of
each subfigure.

Finally, we extended the aforementioned four algorithms on the TSP50 dataset (500 instances) from
the existing 3 runs (200 iterations) under the RI framework to 1000 iterations. The iteration curves
and convergence performance comparison results are shown in Figure 11. It can be observed that
almost all LLM-AHD methods have approached or even reached the optimal value after 150–200
iterations, with little improvement in the objective value beyond 200 iterations. Therefore, consid-
ering factors such as performance improvement, LLM token consumption, and running time costs,
we adopt 3 runs for all baselines, with 200 iterations per run.

In summary, although theoretical convergence guarantees are currently unavailable for LLM-driven
optimization frameworks, the empirical evidence across repeated runs, convergence trajectories, and
ablations indicates that TPD-AHD achieves strong stability and competitive convergence behavior
relative to existing LLM-AHD methods.

D IMPLEMENTATION DETAILS OF TPD-AHD

D.1 PROMPT DESIGN OF TPD-AHD

We describe the design and function of the core prompts used in the TPD-AHD framework. These
prompts are instrumental in guiding the LLM through the heuristic generation and refinement pro-
cess, directly influencing both the accuracy of the generated heuristics and the efficiency of the
overall optimization loop.

During the initialization of the candidate solution pool, we introduce a ROLE field within the prompt
module to mitigate heuristic homogeneity and enhance search diversity (see Figure 12). This field
assigns the LLM a specific persona, such as expert in code optimization, heuristic algorithm re-
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STRUCTURED_ORIENTED_ENGINEER = """You are an algorithm engineer, who prioritizes clean structure and maintainability. Your primary 

goal is to generate well-organized, executable, and easy-to-maintain code, even if it’s not the most performant. The code should be 

scalable and logically coherent. You may take a conservative approach to ensure every line follows solid engineering practices."""

EFFICIENCY_ORIENTED_OPTIMIZER = """You are a master of efficiency optimization. Your goal is to make the code as fast, high-scoring, 

and resource-efficient as possible, while still ensuring functional correctness. You may sacrifice structural elegance and 

generality as long as the code runs faster, uses less memory, or achieves higher scores.What you pursue is the most score-effective 

code, not the most elegant form."""

INSTRUCTION_FAITHFUL_IMPLEMENTER = """You are an expert in following user instructions. Your core objective is to **generate code 

that faithfully reflects the user's requirements, descriptions, and context**, even if it means using unconventional methods, 

inconsistent styles, or sacrificing some structure and efficiency.Your code should prioritize **task completion first**, and only 

then consider **how** it is implemented."""

MATHEMATICAL_REASONING_THEORIST = """You are a mathematical optimization theorist with deep expertise in combinatorial optimization, 

graph theory, discrete mathematics, and proof techniques.  

Your objective is to design heuristics based on solid mathematical principles, deriving rules from first-principles reasoning, 

structural properties, and formal arguments.  

You prioritize correctness, theoretical soundness, invariants, bounds, and reasoning about asymptotic behavior, even if the 

resulting code is not the simplest or fastest.  

You often explain why your heuristic is mathematically justified."""

OPERATIONS_RESEARCH_STRATEGIST = """You are an operations research strategist with mastery in classical heuristic paradigms such as 

local search, metaheuristics, constructive heuristics, decomposition, relaxation, and approximation.  

Your goal is to design heuristics with strong global structure, clear decision criteria, and strategic planning concepts such as 

marginal gains, dual reasoning, or decomposition of the search space.  

Your generated code reflects high-level optimization thinking, prioritizing solution quality and global structure over simplicity or 

execution speed."""

HIGH_DIMENSION_ABSTRACTION_ARCHITECT = """You think in high-dimensional spaces, identifying abstract patterns, latent structures, 

and geometric or manifold-based interpretations of combinatorial problems.  

Your heuristics capture global geometry, structural coherence, and multi-scale representations of the optimization landscape.  

The code you produce reflects abstract reasoning, layered decision logic, and conceptual clarity in manipulating high-dimensional 

structure."""

CREATIVE_HEURISTIC_INVENTOR = """You specialize in inventing novel, unconventional heuristics that do not follow classical 

templates.  

Your priority is originality, creativity, and discovering new structural signals in the problem, even if the method seems 

unorthodox.  

You produce heuristics that rethink how decisions are made, exploring surprising patterns, emergent rules, or analogies borrowed 

from unrelated domains."""

PRAGMATIC_ROBUSTNESS_ENGINEER = """You design heuristics that must be robust across all instances, distributions, and edge cases.  

Your priority is reliability, safe decisions, fallback mechanisms, and handling degenerate scenarios gracefully.  

You trade aggressive optimization for robustness, stability, and predictable behavior.  

Your code features explicit safeguards, checks, and defensive design patterns."""

PROOF_DRIVEN_OPTIMIZER = """You approach heuristic design from a proof-oriented mindset.  

Your goal is to generate heuristics that come with clear invariants, correctness arguments, monotonicity reasoning, or bounds on 

improvements.  

Even though heuristics are not formal algorithms, you strive to make their decision logic analyzable, explainable, and consistent 

with theoretical guarantees."""

META_REFLECTIVE_TUNER = """You continuously analyze your own reasoning, critique the heuristic you propose, and refine it.  

Your goal is not only to generate code but to generate code that has been internally stress-tested by your own reasoning.  

You compare alternatives, examine failure modes, and tune the heuristic logically before outputting the final version."""

Role Templates

Figure 12: The ROLE prompt.
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'''{ROLES[num%10]}

Now, you need to generate code based on the task instruction provided below.

**Task Description**:

{task_prompt}

This is the tamplate you should follow, please implement the following Python function.

**Template Function**:

{str(temp_func)}

Please strictly follow the template function! You only need to generate code, and no other 

content is allowed.'''

Prompt for Initialize

Figure 13: The initialization prompt.

"""Compare two heuristic algorithms for the given task and identify the logic gap.

<task>
{task_prompt}
</task>

<chosen_code>
{chosen_code}
</chosen_code>

<rejected_code>
{rejected_code}
</rejected_code>

<analysis_instructions>
Analyze WHY the chosen code performed better than the rejected code.
Focus ONLY on **algorithmic logic** (e.g., search strategy, priority rule, randomness), 
NOT syntax or style.
Output format:
1. [Strength of Chosen]: ...
2. [Weakness of Rejected]: ...
3. [Key Reason for Gap]: ...
Keep it concise (under 100 words total).
</analysis_instructions>
"""

Prompt for Loss

Figure 14: The prompt for the forward propagation.

searcher, or engineering consultant, encouraging the generation of heuristics from varied perspec-
tives. This role-based prompting enriches the initial heuristic pool with diverse starting points,
thereby improving its overall quality and exploratory potential. The initialization prompt is shown
in Figure 13.

The prompt structure for the forward propagation phase, illustrated in Figure 14, is composed of
three modules: task description, chosen code, and rejected code. The task description frames
the LLM as a heuristic difference evaluator, directing it to compare the performance of chosen and
rejected heuristic code and summarize the differences into a structured textual loss. This approach
ensures a clear evaluation objective, minimizes bias, and yields a interpretable loss signal suitable
for gradient-based updates.

In the backward propagation phase, the prompt structure is extended to include a textual loss mod-
ule, resulting in four components: task description, textual loss, chosen code, and rejected code
(see Figure 15). Here, the LLM acts as a gradient generator, leveraging the textual loss and code
comparisons to identify heuristic shortcomings and produce actionable textual gradients. These
gradients provide explicit, natural language instructions for refining the prompt in the subsequent
iteration, closing the optimization loop in a transparent and directed manner.
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"""Based on the analysis of the previous generation, generate evolutionary directions 
(gradients) for the next code iteration.

<analysis_summary>
{loss}
</analysis_summary>

<base_code>
{chosen_code}
</base_code>

<instructions>
Generate 3-5 specific, actionable suggestions to further optimize the base code.
- Suggestions must be about **algorithm logic** (e.g., "Add a dynamic penalty factor", 
"Introduce simulated annealing probability").
- Avoid generic advice like "Clean up code".
- Aim to break out of local optima.
Output ONLY the suggestions as a numbered list.
</instructions>
"""

Prompt for Grad

Figure 15: The prompt for the backward propagation.

D.2 EXAMPLES OF TPD-AHD WORKFLOW

In this subsection, we present detailed examples of the TSP (constructive method) task within the
TPD-AHD framework. Other tasks, such as TSP (ACO, Random Insertion), are respectively illus-
trated in Figures 28 and 29. These examples illustrate the operational mechanism and optimization
effects of the framework through visualization and detailed breakdowns. The specific illustrations
are shown in Figures 26 and 27. Both figures follow a consistent hierarchical logic, depicting the
complete loop from the initial heuristic selection to the final optimization.

Heuristic Comparison and Selection. The upper part of each figure presents a pair of heuris-
tic comparison samples selected using the best-anchoring pairing method. The left side displays
the superior-performing heuristic, which demonstrates stronger performance on key metrics such as
solution quality and computational efficiency. The right side shows the relatively inferior heuris-
tic. This clear contrast provides a reference foundation for subsequent gradient computation and
optimization.

Core Computational Results. The middle part of each figure sequentially presents two core com-
putational results:

• Text Loss Computation: The first layer shows the text loss value of the heuristic preference
pair computed via the forward feedback mechanism. This loss quantifies the performance
gap between the superior and inferior heuristics and serves as the “target signal” for subse-
quent optimization.

• Text Gradient Generation: Immediately following the loss computation, the text loss is
backpropagated through the backward propagation algorithm to obtain the text gradient.
The gradient information precisely identifies the key nodes and directions in the inferior
heuristic that require improvement, providing concrete guidance for iterative heuristic op-
timization.

At the bottom of each figure, the newly generated heuristic after gradient optimization is presented,
marking the completion of a single optimization cycle.

Validation of Framework Effectiveness. From the detailed examples, it is evident that almost
every targeted optimization suggestion contained in the text gradients is reflected in the updated
heuristic. This prominent feature fully validates the core value of the TPD-AHD framework: it
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score = distance_to_current - (distance_to_destination / 10)

score = distance_to_current - (distance_to_destination / 
penalization_factor)

if len(unvisited_nodes) > 3 and distance_to_destination > 20:
    continue
score_normalized = score / max(1, np.max(distance_matrix))

Advantages:
Incorporation of Destination Awareness, Flexibility through 
Scoring Mechanism, More Inclusive Exploration of Unvisited Nodes
Weaknesses:
Simplicity Leading to Local Optima, Lack of Strategic Value 
Assessment, Minimal Adaptability
Improvement:
Dynamic Penalization Factor, Incorporate Heuristic Methods, Limit 
Node Evaluation, Score Normalization

shortest_distance = distance_matrix[current_node][nearest_node]Chosen 

Rejected 

Opitmize

Gradients

Figure 16: The evolutionary trajectory of TPD-AHD on the TSP construct task. The horizontal
axis represents the number of iterations, and the vertical axis represents the objective value of the
task. When the best heuristic in the candidate solution pool changed for the first time, the LLM
correctly identified the advantages of the better heuristic and the drawbacks of the worse one, and
based on this, successfully proposed improvements, leading to an increase in the objective value of
the offspring heuristics.

effectively addresses the interpretability limitations of traditional Large Language Model-based Au-
tomated Heuristic Design (LLM-AHD) frameworks by precisely transmitting gradient information.
This provides clear, controllable, and directionally accurate guidance for heuristic evolution, signif-
icantly enhancing the transparency and reliability of the heuristic optimization process.

Analysis of the Global Information of Heuristics. Through continuous evolutionary iterations,
LLMs integrate rich global optimization information under the guidance of optimal anchored pref-
erence information and textual gradients. Via textual loss difference analysis and iterative optimiza-
tion, TPD-AHD generates a series of rules with progressively increasing complexity. During the
iteration process, we observe that the generated rules continuously integrate:

• global statistical information (e.g., minimum/maximum/mean of node distances);
• global path metrics (e.g., accumulated path length, number of unvisited nodes);
• lookahead reasoning logic (e.g., penalty mechanisms based on future feasibility);
• and multi-step scoring mechanisms that combine local and global features.

We take a heuristic generated by TPD-AHD within the TSP Random Insertion framework as an
example, where similar global information can be observed. This part of the content is supplemented
in Figure 17, 18 and 19.

D.3 EXAMPLES OF EVOLUTIONARY TRAJECTORY

As illustrated in Figure 16, we present the evolutionary trajectory of TPD-AHD on the TSP construct
task. In the first generation, TPD-AHD achieved an initial optimal solution with an objective value
of -6.87. No update occurred in the second generation. By the third generation, TPD-AHD identi-
fied the strengths of the superior heuristic from a pair of preference comparisons, notably the score
calculation method that could be retained, and recognized the weaknesses of the inferior heuristic,
indicating potential deficiencies in the distance matrix computation method. Consequently, TPD-
AHD proposed targeted improvement suggestions, including the introduction of a Dynamic Penal-
ization Factor, the incorporation of Heuristic Methods, the Limitation of Node Evaluation, and Score
Normalization.

This evolutionary trajectory exemplifies TPD-AHD’s capability to provide human-understandable,
interpretable guidance for heuristic design. By leveraging the LLM’s ability to generate textual
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feedback, TPD-AHD not only enhances the transparency of the heuristic optimization process but
also demonstrates its effectiveness in iteratively refining heuristics through explicit, natural language
instructions.

D.4 HEURISTIC TEMPLATES FOR EACH TASK

We present some of the templates of the heuristic design framework mentioned in the experiments
of this paper along with their corresponding task descriptions in this section.

• TSP Construct. Paths are incrementally constructed using the current node, destina-
tion node, unvisited node set, and distance matrix. The template is centered on the se-
lect next node function, which accepts current node, destination node, unvisited nodes (a
1D np.ndarray), and distance matrix (a 2D np.ndarray) as inputs and outputs the ID (int) of
the next node to visit. Its default implementation returns the first node in the unvisited set
as a replaceable baseline.

• TSP ACO. This template generates an edge heuristic matrix for TSP in ACO: it takes a dis-
tance matrix (np.ndarray) as input and returns a same-shaped heuristic matrix where larger
values indicate more promising edges; the default is ηij = 1/dij , but it can be replaced by a
novel multi-factor design (e.g., combining angle/direction consistency, local density/degree
centrality, closeness to the remaining unvisited set, and penalties) with optional sparsifica-
tion (zeroing low-value edges) to improve efficiency and robustness.

• TSP Random Insertion. This template defines the function select next city(state), where
the input state includes the current path tour, the set of unvisited cities unvisited, the com-
plete distance matrix distance matrix, and the city coordinates instance. The function is
required to return an index of an unvisited city based solely on this information; the default
implementation adopts the ”nearest neighbor” strategy (selecting the closest unvisited city
from the last city), which can be replaced with more discriminative novel heuristics as a
baseline.

• CVRP Construct. This template targets the node-by-node selection phase of the Capaci-
tated Vehicle Routing Problem (CVRP) and defines the function select next node. Given
the current node current node, depot depot, set of unvisited nodes unvisited nodes, re-
maining vehicle capacity rest capacity, node demands demands, and distance matrix dis-
tance matrix, the function returns the ID of an insertable next node. The default implemen-
tation adopts a greedy criterion of ”maximum profit/distance ratio” — calculating the score
as demand / distance for each node whose demand can be satisfied, and selecting the node
with the highest score (treating distance=0 as infinity to avoid division by zero). Serving as
a baseline, this implementation can be replaced with novel heuristics integrating multiple
factors.

• CVRP ACO. This template is designed to construct an edge heuristic matrix for
Ant Colony Optimization (ACO) applied to the Capacitated Vehicle Routing Problem
(CVRP). It takes as inputs distance matrix (np.ndarray), coordinates (np.ndarray), demands
(np.ndarray), and capacity (int), and outputs a heuristic matrix of the same shape, where
larger values indicate that the corresponding edge is more deserving of priority selection in
path construction. The default implementation adopts ηij = 1/dij , and sets the diagonal
elements to 0; serving as a baseline, this can be replaced with novel heuristics integrating
multiple factors.

• JSSP Construct. This template targets the online construction phase of job shop schedul-
ing and defines the function determine next operation(current status, feasible operations).
The input current status includes the available time list of each machine (machine status),
the available time list of each job (job status), and the set of currently schedulable op-
erations (feasible operations), where each element is a tuple of (job id, machine id, pro-
cessing time). The default implementation adopts a greedy strategy, directly selecting the
operation with the shortest processing time; serving as a baseline, this can be replaced with
novel heuristics integrating multiple factors.
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def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 
np.ndarray, distance_matrix: np.ndarray) -> int:
    """
    Design a novel algorithm to select the next node in each step.
    """
    .
    .
    .    
    total_distance = np.sum(distance_matrix[current_node][unvisited_nodes])
    average_distance = total_distance / (len(unvisited_nodes) if 
len(unvisited_nodes) > 0 else 1)
    variance_distance = np.var(distance_matrix[current_node][unvisited_nodes]) if 
len(unvisited_nodes) > 0 else 0
    penalization_factor = max(1, len(unvisited_nodes) / 10 + average_distance / 20 
+ variance_distance / 30)
    .
    .
    .            
        adjusted_connectivity_score = np.sum(np.exp(-
distance_matrix[node][unvisited_nodes])) / (len(unvisited_nodes) if 
len(unvisited_nodes) > 0 else 1)
    .
    .
    .         
    .
    .
    .    
        z_score_normalization = (clipped_score - np.mean(distance_matrix)) / 
(np.std(distance_matrix) if np.std(distance_matrix) > 0 else 1)

    .
    .
    .            
    return best_node

1. Calculation of the Dynamic Penalization 
Factor

This block calculates a dynamic penalization_factor by 
aggregating global state information about the entire 
set of remaining unvisited_nodes relative to the 
current_node. It aims to adapt the algorithm's behavior 
based on the macroscopic properties of the remaining 
tour.

2. Evaluation of Node Connectivity

This block computes a score that represents a 
candidate node's "connectivity" or centrality to the 
entire set of remaining unvisited nodes. It uses a 
global view of the network to identify nodes that are 
well-positioned for future moves.

3. Z-score Normalization Using the Full 
Distance Matrix

This block normalizes the final candidate score using 
the global mean and standard deviation of the entire 
distance_matrix. This places the score for the current 
decision into the context of the overall problem's scale 
and distribution of distances.

Figure 17: Global Information Analysis of a Heuristic Generated by TPD-AHD in the TSP Construct
Framework.

def heuristics(distance_matrix: np.ndarray) -> np.ndarray:
    """
    Compute heuristic information for ACO in TSP.
    """
    .
    .
    .    
    min_dists = np.full(n, np.inf)
    min_dists[valid_rows] = np.min(np.where(valid_mask, distance_matrix, np.inf), 
axis=1)[valid_rows]
    
    min_sum = min_dists[:, None] + min_dists[None, :]
    valid_min_sum = np.maximum(min_sum, 1e-10)
    savings_matrix = (min_sum - distance_matrix) / valid_min_sum
    
    inv_dist = np.where(valid_mask, 1 / distance_matrix, 0)
    harmonic_centrality = np.sum(inv_dist, axis=1)
    centrality_max = np.max(harmonic_centrality) if np.max(harmonic_centrality) > 0 
else 1
    centrality_norm = harmonic_centrality / (centrality_max + 1e-10)
    .
    .
    .  
    centrality_matrix = centrality_norm[:, None] + centrality_norm[None, :]
    
    variance = np.var(distance_matrix[valid_mask])
    temperature = 0.1 * (1 + np.log1p(variance))
    .
    .
    .
    heur_matrix = np.where(inf_mask, 0, heur_matrix)
    
    max_val = np.max(heur_matrix)
    if max_val > 0:
        heur_matrix = heur_matrix / max_val
    .
    .
    .    
    return heur_matrix

           

1. Savings Matrix Calculation

This block computes a "savings" heuristic, which is a 
classic concept in vehicle routing. It globally identifies 
how much distance is saved by connecting two cities 
directly versus connecting them through a depot or via 
their nearest neighbors.

2. Harmonic Centrality Calculation

This block calculates a normalized harmonic centrality 
for each city and then constructs a symmetric matrix 
where each edge's value is the sum of the centralities 
of its two endpoint cities. This leverages global 
connectivity information to favor edges connected to 
centrally located nodes.

3. Final Heuristic Aggregation and 
Exponential Scaling

This block uses the global variance of all distances to 
calculate a "temperature" parameter, which is then 
used to non-linearly scale the final heuristic matrix 
through an exponential function.

Figure 18: Global Information Analysis of a Heuristic Generated by TPD-AHD in the TSP ACO
Framework.
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def select_next_city(state):
    """
    Design a novel algorithm to select the next city in each step.
    """
    .
    .
    .    
    if len(tour) % 10 == 0:
        centroid = np.mean(instance[tour], axis=0)
        max_dist = -1
        selected_city = unvisited[0]
        for city in unvisited:
            city_coords = instance[city]
            dist = np.linalg.norm(city_coords - centroid)
            if dist > max_dist:
                max_dist = dist
                selected_city = city
        return selected_city

    regrets = []
    min_costs = []
    candidates_info = []
    
    for candidate in unvisited:
        min_insertion_cost = float('inf')
        second_min_insertion_cost = float('inf')
        
        for i in range(len(tour)):
            city_a = tour[i]
            city_b = tour[(i + 1) % len(tour)]
            
            insertion_cost = (distance_matrix[city_a][candidate] + 
                            distance_matrix[candidate][city_b] - 
                            distance_matrix[city_a][city_b])
            
            if insertion_cost < min_insertion_cost:
                second_min_insertion_cost = min_insertion_cost
                min_insertion_cost = insertion_cost
            elif insertion_cost < second_min_insertion_cost:
                second_min_insertion_cost = insertion_cost
        
        regret = second_min_insertion_cost - min_insertion_cost
        regrets.append(regret)
        min_costs.append(min_insertion_cost)
        candidates_info.append((candidate, regret, min_insertion_cost))
    .
    .
    .
        for idx in top_indices:
            candidate = unvisited[idx]
            simulated_tour = tour.copy()
            best_insertion_pos = 0
            best_insertion_cost = float('inf')
            
            for i in range(len(tour)):
                city_a = tour[i]
                city_b = tour[(i + 1) % len(tour)]
                insertion_cost = (distance_matrix[city_a][candidate] + 
                                distance_matrix[candidate][city_b] - 
                                distance_matrix[city_a][city_b])
                if insertion_cost < best_insertion_cost:
                    best_insertion_cost = insertion_cost
                    best_insertion_pos = i
            
            simulated_tour.insert(best_insertion_pos + 1, candidate)
            remaining_unvisited = [u for u in unvisited if u != candidate]
            
            if len(remaining_unvisited) > 0:
                future_regrets = []
                for future_candidate in remaining_unvisited[:5]:
                    future_min_cost = float('inf')
                    future_second_min = float('inf')
                    
                    for j in range(len(simulated_tour)):
                        city_c = simulated_tour[j]
                        city_d = simulated_tour[(j + 1) % len(simulated_tour)]
                        future_cost = (distance_matrix[city_c][future_candidate] + 
                                     distance_matrix[future_candidate][city_d] - 
                                     distance_matrix[city_c][city_d])
                        
                        if future_cost < future_min_cost:
                            future_second_min = future_min_cost
                            future_min_cost = future_cost
                        elif future_cost < future_second_min:
                            future_second_min = future_cost
                    
                    if future_second_min != float('inf'):
                        future_regrets.append(future_second_min - future_min_cost)
                
                flexibility = np.mean(future_regrets) if future_regrets else 0
                current_regret = regrets[idx]
                
                combined_score = 0.7 * current_regret + 0.3 * flexibility
                
                if combined_score > best_flexibility:
                    best_flexibility = combined_score
                    best_candidate = candidate
    .
    .
    .
    return unvisited[selected_index]

           

1. Centroid-Based Selection

This block's purpose is to periodically (every 10th step) 
introduce a long-term, diversity-seeking move into the 
construction process by selecting the city that is 
farthest from the geometric center (centroid) of all 
cities visited so far.

2. Regret Calculation

The purpose of this block is to compute a "regret" 
value for each unvisited city, which quantifies the 
opportunity cost of not inserting that city at its best 
possible position in the current complete tour.

3. Look-Ahead Flexibility Evaluation

This block implements a look-ahead mechanism to 
evaluate the long-term impact of selecting a high-
regret candidate. It aims to choose the candidate that 
not only has a high immediate regret but also 
preserves good insertion options for the remaining 
cities.

Figure 19: Global Information Analysis of a Heuristic Generated by TPD-AHD in the TSP Random
Insertion Framework.
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template_program = '''
import numpy as np
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: np.ndarray, 
distance_matrix: np.ndarray) -> int: 
    """
    Design a novel algorithm to select the next node in each step.

    Args:
    current_node: ID of the current node.
    destination_node: ID of the destination node.
    unvisited_nodes: Array of IDs of unvisited nodes.
    distance_matrix: Distance matrix of nodes.

    Return:
    ID of the next node to visit.
    """
    next_node = unvisited_nodes[0]

    return next_node
'''

task_description = "Given a set of nodes with their coordinates, you need to find the 
shortest route that visits each node once and returns to the starting node. \
The task can be solved step-by-step by starting from the current node and iteratively 
choosing the next node. Help me design a novel algorithm that is different from the 
algorithms in literature to select the next node in each step."

TSP_Construct

Figure 20: The template and task description of TSP Construct.

template_program = '''
import numpy as np

def heuristics(distance_matrix: np.ndarray) -> np.ndarray:
    """
    The `heuristics` function takes as input a distance matrix, and returns prior 
indicators of how promising it is to include each edge in a solution. The return is of the 
same shape as the input.
    
    Args:
        distance_matrix (np.ndarray): A square matrix of pairwise distances between cities.
    
    Returns:
        np.ndarray: A heuristic matrix of the same shape, where larger values
                    indicate higher desirability for selecting an edge.
    """

    return 1 / distance_matrix

'''

task_description = '''
Design a heuristic function for TSP using Ant Colony Optimization (ACO). The function 
takes a distance matrix as input and returns a matrix of the same shape, where higher 
values indicate more promising edges. Define a novel way to evaluate edge desirability, 
different from standard inverse-distance heuristics. Try sparsifying the matrix by setting 
unpromising elements to zero. Try combining various factors to determine how promising it 
is to select an edge.
'''

TSP_ACO

Figure 21: The template and task description of TSP ACO.
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template_program = '''
import numpy as np
def select_next_city(state):
    """
    Design a novel algorithm to select the next city in each step.

    Args:
    state = {
    "instance": np.array with shape (n, 2),
    "tour": current tour (in order) list[int],
    "unvisited": list of remaining unvisited cities list[int],
    "distance_matrix": np.array (n,n)
    }

    Return:
    Should return a city index (int) from unvisited
    """

    last_city = state["tour"][-1]
    unvisited = state["unvisited"]
    dist = state["distance_matrix"][last_city][unvisited]
    return int(unvisited[np.argmin(dist)])
'''

task_description = "Given the current partial tour and the set of unvisited cities, design 
a novel heuristic that selects the next city to insert into the tour. Your method should 
rely only on the available state information and must differ from standard approaches such 
as nearest, farthest, or random selection."

TSP_Random_Insertion_City

Figure 22: The template and task description of TSP Random Insertion.

template_program = '''
import numpy as np
def select_next_node(current_node: int, depot: int, unvisited_nodes: np.ndarray, 
rest_capacity: np.ndarray, demands: np.ndarray, distance_matrix: np.ndarray) -> int:
    """Design a novel algorithm to select the next node in each step.
    Args:
        current_node: ID of the current node.
        depot: ID of the depot.
        unvisited_nodes: Array of IDs of unvisited nodes.
        rest_capacity: rest capacity of vehicle
        demands: demands of nodes
        distance_matrix: Distance matrix of nodes.
    Return:
        ID of the next node to visit.
    """
    best_score = -1
    next_node = -1

    for node in unvisited_nodes:
        demand = demands[node]
        distance = distance_matrix[current_node][node]

        if demand <= rest_capacity:
            score = demand / distance if distance > 0 else float('inf')  # Avoid division 
by zero
            if score > best_score:
                best_score = score
                next_node = node

    return next_node
'''

task_description = """
Given a set of customers and a fleet of vehicles with limited capacity,
the task is to design a novel algorithm to select the next node in each step,
with the objective of minimizing the total cost.
"""

CVRP_Construct

Figure 23: The template and task description of CVRP Construct.
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template_program = '''
import numpy as np
def heuristics(distance_matrix: np.ndarray, coordinates: np.ndarray, demands: np.ndarray, 
capacity: int) -> np.ndarray:
    """
    Compute heuristic information for Ant Colony Optimization (ACO) in Capacitated Vehicle 
Routing Problem (CVRP).
    
    Args:
        distance_matrix (np.ndarray): A square matrix  of pairwise distances between nodes. 
Nodes include 1 depot (index 0) and n-1 customers.
        coordinates (np.ndarray): An array of node coordinates, where coordinates[0] is 
the depot.
        demands (np.ndarray): An array (shape: n) of demands for each node. demands[0] = 0 
(depot has no demand), others are customer demands.
        capacity (int): The maximum load capacity of each vehicle.
    
    Returns:
        np.ndarray: A heuristic matrix where larger values indicate higher desirability 
                    for selecting an edge in CVRP solution construction. Should consider 
CVRP constraints 
                    (e.g., vehicle capacity, demand satisfaction) and practical routing 
efficiency.
    """
    with np.errstate(divide='ignore', invalid='ignore'):
        heuristic = 1 / distance_matrix

    np.fill_diagonal(heuristic, 0)
    return heuristic
'''

task_description = '''
Design a heuristic function for Capacitated Vehicle Routing Problem (CVRP) using Ant 
Colony Optimization (ACO). The function takes a distance matrix, node coordinates, 
customer demands, and vehicle capacity as inputs, and returns a matrix of the same shape 
as the distance matrix, where higher values indicate more promising edges. Define a novel 
way to evaluate edge desirability, different from standard inverse-distance heuristics. 
You may combine multiple CVRP-specific factors (e.g., demand-capacity fit, proximity) and 
optionally sparsify the matrix by setting weak edges to zero.
'''

CVRP_ACO

Figure 24: The template and task description of CVRP ACO.
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template_program = '''
import numpy as np

def determine_next_operation(current_status, feasible_operations):
    """
    Determine the next operation to schedule based on a greedy heuristic.

    Args:
        current_status: A dictionary with two lists:
            - 'machine_status': a list where index = machine_id, value = the time the 
machine is available
            - 'job_status': a list where index = job_id, value = the time the job is 
available
        feasible_operations: A list of feasible operations, each represented as a tuple
            (job_id, machine_id, processing_time).

    Returns:
        The next operation to schedule, represented as a tuple (job_id, machine_id, 
processing_time).
    """
    # Simple greedy heuristic: choose the operation with the shortest processing time
    next_operation = min(feasible_operations, key=lambda x: x[2])
    return next_operation
'''

task_description = '''
Given jobs and machines, schedule jobs on machines to minimize the total makespan. Design 
an algorithm to select the next operation in each step.
Important:
- Be careful when computing any ratio, priority, or weight that involves machine or job 
availability times.
- The machine or job status may initially be zero, so make sure to handle or avoid 
division by zero.
'''

JSSP_Construct

Figure 25: The template and task description of JSSP Construct.
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Heuristic 2 (Obj Score: -6.411359052660979)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: np.ndarray, distance_matrix: 
np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], axis=1)
    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - remaining_center, axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + node_distances_to_center)
    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5
    # Directional momentum vector calculation
    current_coords = distance_matrix[current_node]
    dest_coords = distance_matrix[destination_node]
    directional_vector = dest_coords[:2] - current_coords[:2]
    dir_norm = np.linalg.norm(directional_vector)
    directional_momentum = directional_vector / dir_norm if dir_norm > 0 else np.zeros(2)
    # Sliding window for backtracking detection
    window_size = 5
    historical_angles = []
    historical_positions = []
    # Continuous phase interpolation
    early_phase_weight = 1 - np.clip(visited_ratio / 0.2, 0, 1)
    mid_phase_weight = np.clip(visited_ratio / 0.6, 0, 1) * np.clip((1 - visited_ratio) / 0.4, 0, 1)
    late_phase_weight = np.clip((visited_ratio - 0.8) / 0.2, 0, 1)
    # Quadrant biasing with directional momentum
    quadrant_counts = [0, 0, 0, 0]
    for node in unvisited_nodes:
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        quadrant = int(np.arctan2(dy, dx) / (np.pi / 2)) % 4
        quadrant_counts[quadrant] += 1

    quadrant_weights = [1 - 0.05 * (count / (len(unvisited_nodes) + 1)) for count in quadrant_counts]
    # Node importance via connectivity potential
    node_potentials = []
    for idx, node in enumerate(unvisited_nodes):
        dist_to_others = distance_matrix[node][unvisited_nodes]
        valid_dists = dist_to_others[dist_to_others > 0]
        if len(valid_dists) > 0:
            avg_connectivity = 1 / np.mean(valid_dists)
        else:
            avg_connectivity = 0
        node_potentials.append(avg_connectivity)
    node_potentials = np.array(node_potentials)
    node_potentials = (node_potentials - np.min(node_potentials)) / (np.max(node_potentials) - 
np.min(node_potentials) + 1e-5)

    # Historical path context
    historical_distances = []
    for node in unvisited_nodes:
        if len(recent_history) >= window_size:
            window_nodes = recent_history[-window_size:]
            if len(window_nodes) >= 2:
                path_x = [distance_matrix[n][0] for n in window_nodes]
                path_y = [distance_matrix[n][1] for n in window_nodes]
                path_length = sum(distance_matrix[window_nodes[i]][window_nodes[i+1]] for i in 
range(len(window_nodes)-1))
                straight_line = distance_matrix[window_nodes[0]][node]
                if straight_line > 0:
                    inefficiency = path_length / straight_line
                    if inefficiency > 1.7:
                        penalty_angle = np.arccos(np.clip(
                            np.dot(directional_momentum, [distance_matrix[node][0] - current_coords[0], 
                                                          distance_matrix[node][1] - current_coords[1]]) /
                            (np.linalg.norm([distance_matrix[node][0] - current_coords[0], 
                                             distance_matrix[node][1] - current_coords[1]]) + 1e-5), -1, 1))
                        quadrant_weights[quadrant] *= (1 + penalty_angle / np.pi)
        historical_distances.append(path_length / (straight_line + 1e-5) if 'path_length' in locals() and 
'straight_line' in locals() and straight_line > 0 else 1.0)
    # Predictive cost estimation
    predictive_costs = []
    for idx, node in enumerate(unvisited_nodes):
        simulated_path = []
        current_sim_node = node
        visited_sim = set([current_sim_node])
        while len(visited_sim) < min(5, len(unvisited_nodes)):
            candidates = [n for n in unvisited_nodes if n not in visited_sim]
            if not candidates:
                break
            next_sim = min(candidates, key=lambda x: distance_matrix[current_sim_node][x] + 0.5 * 
distance_matrix[x][destination_node])
            simulated_path.append(next_sim)
            visited_sim.add(next_sim)
            current_sim_node = next_sim
        predictive_cost = sum(distance_matrix[simulated_path[i]][simulated_path[i+1]] for i in 
range(len(simulated_path)-1)) if len(simulated_path) > 1 else 0
        predictive_costs.append(predictive_cost)
    predictive_costs = np.array(predictive_costs)
    predictive_costs = (predictive_costs - np.min(predictive_costs)) / (np.max(predictive_costs) - 
np.min(predictive_costs) + 1e-5)
    # Node scoring with enhancements
    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        potential = node_potentials[idx]
        predictive_cost = predictive_costs[idx]
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        angle_to_candidate = np.arctan2(dy, dx)
        quadrant = int(angle_to_candidate / (np.pi / 2)) % 4
        quadrant_score = quadrant_weights[quadrant]
        # Directional momentum alignment
        candidate_vector = np.array([dx, dy])
        candidate_norm = np.linalg.norm(candidate_vector)
        if candidate_norm > 0 and dir_norm > 0:
            momentum_alignment = np.dot(directional_momentum, candidate_vector / candidate_norm)
            momentum_factor = 1 - (np.arccos(np.clip(momentum_alignment, -1, 1)) / np.pi)
        else:
            momentum_factor = 0.5
        # Adaptive quadrant weighting
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quadrant_score = 1 + (1 - quadrant_score)

        # Phase blended scoring
        early_score = dist_to_candidate / (density + 1e-5) * (1 - 0.3 * potential)
        mid_score = dist_to_candidate + (0.4 + 0.6 * visited_ratio) * dist_candidate_to_dest
        late_score = dist_to_candidate + 0.9 * dist_candidate_to_dest + 0.4 * predictive_cost

        phase_score = (
            early_phase_weight * early_score +
            mid_phase_weight * mid_score +
            late_phase_weight * late_score
        )

        # Combine with directional momentum and quadrant bias
        final_score = phase_score * (0.7 + 0.3 * momentum_factor) * quadrant_score
        # Tie-breaking perturbation
        perturbation = final_score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        final_score += perturbation
        if final_score < best_score:
            best_score = final_score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 7:
                recent_history.pop(0)

    return next_node

                        

   

Heuristic 1 (Obj Score: -6.2677441099390485)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: np.ndarray, distance_matrix: 
np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []

    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], axis=1)

    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - remaining_center, axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + node_distances_to_center)

    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5

    if visited_ratio < 0.15 + path_deviation * 0.1:
        heuristic_phase = 'early'
    elif visited_ratio < 0.6 + path_deviation * 0.2:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    current_coords = distance_matrix[current_node]
    quadrant_counts = [0, 0, 0, 0]
    for node in unvisited_nodes:
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        quadrant = int(np.arctan2(dy, dx) / (np.pi / 2)) % 4
        quadrant_counts[quadrant] += 1

    quadrant_weights = [1 - 0.05 * (count / (len(unvisited_nodes) + 1)) for count in quadrant_counts]

    node_degrees = np.sum(distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0, axis=1)

    if heuristic_phase == 'early':
        connectivity_scores = []
        for node in unvisited_nodes:
            reachable_nodes = np.where(distance_matrix[node][unvisited_nodes] > 0)[0]
            second_hop = []
            for r_node in reachable_nodes[:3]:
                second_hop.extend(np.where(distance_matrix[unvisited_nodes[r_node]][unvisited_nodes] > 0)[0])
            unique_reachable = len(set(reachable_nodes) | set(second_hop))
            connectivity_scores.append(unique_reachable / len(unvisited_nodes))
    else:
        connectivity_scores = [1.0] * len(unvisited_nodes)
    heading_angle = 0
    if len(recent_history) >= 2:
        prev_coords = distance_matrix[recent_history[-1]]
        prev_prev_coords = distance_matrix[recent_history[-2]]
        dx_h = prev_coords[0] - prev_prev_coords[0]
        dy_h = prev_coords[1] - prev_prev_coords[1]
        heading_angle = np.arctan2(dy_h, dx_h)

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]
        connectivity = connectivity_scores[idx]
        is_backtracking = False
        if len(recent_history) >= 2:
            prev_node = recent_history[-1]
            prev_prev_node = recent_history[-2]
            direct_path = distance_matrix[prev_prev_node][node]
            detour_path = distance_matrix[prev_prev_node][prev_node] + distance_matrix[prev_node][node]
            if direct_path > 0 and detour_path / direct_path > 1.5 and visited_ratio > 0.1:
                is_backtracking = True
        if is_backtracking:
            continue
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        candidate_angle = np.arctan2(dy, dx)
        deviation = abs(candidate_angle - heading_angle)
        deviation = min(deviation, 2 * np.pi - deviation)
        deviation_deg = np.degrees(deviation)
        angle_penalty = 1.0
        if deviation_deg > 120:
            angle_penalty = 1.2

        if heuristic_phase == 'early':
            composite_distance = dist_to_candidate * (1 - 0.5 * connectivity)
            normalized_score = composite_distance / (density + 1e-5)
            score = normalized_score / (degree + 1)
        elif heuristic_phase == 'late':
            if degree < 2:
                continue
            lookahead_k = min(5, len(unvisited_nodes))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_k]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            lookahead_component = 0.4 * np.min(lookahead_scores) if lookahead_scores else 0
            score = dist_to_candidate + dist_candidate_to_dest * 0.9 + lookahead_component
        else:
            local_progress = (local_densities.mean() - density) / (local_densities.std() + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            dynamic_weight = max(0.2, min(0.8, dynamic_weight))

            score = dist_to_candidate + dynamic_weight * dist_candidate_to_dest

            avg_local_density = np.mean(local_densities)
            lookahead_depth = max(2, min(3, int(avg_local_density / (density + 1e-5) * 3)))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_depth]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            if lookahead_scores:
                lookahead_scores = [s * (1 / (i + 1)) for i, s in enumerate(sorted(lookahead_scores))]
                score += 0.2 * min(lookahead_scores)

        quadrant = int(candidate_angle / (np.pi / 2)) % 4
        quadrant_score = quadrant_weights[quadrant]
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quadrant_score = 1 + (1 - quadrant_score)

        score *= quadrant_score
        score *= angle_penalty

        perturbation = score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        score += perturbation

        if score < best_score:
            best_score = score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)

    return next_node
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The losses:
# Code Evaluation: Chosen vs Rejected

## Three Strongest Advantages of the Chosen Code

### 1. **Strategic Phased Approach with Contextual Adaptation**
The chosen code implements a clear phase-based strategy (early/mid/late) that adapts the node selection criteria based on the proportion of visited nodes. This allows for specialized behaviors at 
different stages of the traversal process, optimizing for exploration in early phases, balance in mid-phases, and directness to destination in late phases. The adaptation to path deviation further 
enhances this contextual awareness.

### 2. **Sophisticated Connectivity Analysis**
The chosen code demonstrates superior connectivity analysis by incorporating multi-hop connectivity assessment in early phases. This provides a more comprehensive understanding of network 
topology than simple direct connections, allowing the algorithm to prioritize nodes that offer better overall network access, not just immediate proximity.

### 3. **Effective Backtracking Prevention with Temporal Awareness**
The implementation of a history-based backtracking detection mechanism is well-designed and effective. By analyzing the detour ratio compared to direct paths and combining this with the visited 
ratio, the code intelligently prevents inefficient revisiting of areas while allowing necessary detours when appropriate. This temporal awareness is crucial for path optimization.

## Three Most Significant Weaknesses of the Rejected Code

### 1. **Overly Complex and Coupled Scoring Mechanism**
The rejected code combines too many factors (historical distances, predictive costs, phase weights, quadrant biases, momentum alignment) in its scoring mechanism without clear prioritization. 
This results in a system where it's difficult to understand the relative importance of different factors and how they interact, reducing maintainability and interpretability.

### 2. **Inefficient Predictive Cost Estimation**
The predictive cost estimation, while conceptually valuable, is computationally expensive and potentially unreliable. The simulation of hypothetical paths with up to 5 nodes doesn't accurately 
represent the complete path and introduces significant computational overhead without clear benefits to the final path quality.

### 3. **Poorly Integrated Historical Context**
The historical path context implementation is overly complex and loosely integrated with the main scoring system. The window-based inefficiency calculation and its impact on quadrant weights 
lacks smooth transitions and could lead to abrupt changes in behavior, potentially causing erratic path selection.

## Why the Chosen Code Was Selected

The chosen code strikes a better balance between sophisticated path analysis and practical implementation. It maintains a clear logical structure with well-defined phases that guide the search 
strategy. Its connectivity analysis provides meaningful topological insight without excessive computational burden. The backtracking prevention mechanism is effective while maintaining flexibility.

The rejected code, while containing some valuable concepts like predictive estimation and momentum alignment, combines too many loosely integrated factors that create an overly complex 
system. Its complexity doesn't necessarily lead to better decisions and introduces potential instability and maintainability issues.

The chosen code represents a more principled approach where each component clearly contributes to the overall objective of finding an efficient path from the current node to the destination, while 
navigating the network of unvisited nodes effectively.

The Gradients:
Here are **five targeted, actionable suggestions** for improving the chosen code, based on its evaluation advantages and to further enhance its performance and maintainability:
---
### 1. **Introduce Smooth Transitions Between Phases to Avoid Abrupt Strategy Shifts**
Currently, phase transitions (early → mid → late) are based on hard thresholds of `visited_ratio`. This may cause sudden changes in behavior, potentially leading to suboptimal node selections 
at boundary conditions.  
**Suggestion**:  
Replace the current discrete phase logic with **fuzzy phase interpolation**. Calculate a weighted combination of early, mid, and late-phase scoring functions based on continuous phase 
weights derived from `visited_ratio`, ensuring smoother behavioral transitions.
---
### 2. **Optimize the Quadrant Weighting Mechanism for Better Spatial Balance**
While quadrant-based directional preference improves exploration, the current method of computing quadrant weights based on static node counts may lead to overcorrection in dense or 
sparse regions.  
**Suggestion**:  
Refine quadrant weighting by incorporating **spatial distribution density** using kernel density estimation (KDE) over node coordinates within each quadrant. This can yield more meaningful 
directional preferences and reduce erratic shifts in direction.
---
### 3. **Refactor the Composite Scoring Function for Better Interpretability and Maintainability**
The scoring function combines many components (distance, density, quadrant, angle penalty, etc.) in a way that makes it difficult to analyze the contribution of each factor.  
**Suggestion**:  
**Normalize and weight each component explicitly**, and expose these weights as configurable parameters (e.g., via a dictionary). This improves transparency and enables easier tuning 
without altering logic, promoting reuse across different problem instances.
---
### 4. **Improve the Backtracking Detection Mechanism with Temporal Decay and Path Context**
The current backtracking logic uses only the last two nodes and a fixed threshold. It may miss longer-term inefficiencies or allow subtle backtracking loops.  
**Suggestion**:  
Enhance the `recent_history` tracking by incorporating **exponential decay of node revisit penalties** over time, and introduce **angle deviation thresholds** for path coherence. This allows for 
more adaptive backtracking detection that considers path momentum.
---
### 5. **Precompute or Cache Connectivity and Density Metrics to Reduce Redundant Computation**
Multiple components (density, connectivity, lookahead) compute similar distance and neighborhood metrics repeatedly across iterations.  
**Suggestion**:  
**Cache or precompute key metrics** such as local density, connectivity, and nearest neighbor lists at the beginning of each selection round. This will reduce redundant computations and 
improve performance, especially for large graphs.
--- 
These improvements build upon the chosen code’s strengths—its phase-based strategy, connectivity awareness, and backtracking prevention—while refining its decision logic and efficiency.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Heuristic 3 (Obj Score: -6.2454075785468355)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 
np.ndarray, distance_matrix: np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]
    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], 
axis=1)
    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - remaining_center, 
axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + 
node_distances_to_center)
    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5
    phase_weights = {
        'early': max(0, min(1, 0.6 - visited_ratio * 2)),
        'mid': max(0, min(1, visited_ratio * 2 - 0.4)),
        'late': max(0, min(1, visited_ratio - 0.6))
    }
    current_coords = distance_matrix[current_node]
    coords_x = remaining_coords[:, 0]
    coords_y = remaining_coords[:, 1]
    dx = coords_x - current_coords[0]
    dy = coords_y - current_coords[1]
    angles = np.arctan2(dy, dx)
    quadrants = (angles / (np.pi / 2)).astype(int) % 4
    unique_quad, counts = np.unique(quadrants, return_counts=True)
    quadrant_counts = np.zeros(4)
    for q, c in zip(unique_quad, counts):
        quadrant_counts[q] = c
    x_coords = coords_x
    y_coords = coords_y
    kde_values = np.zeros(len(x_coords))
    for i in range(len(x_coords)):
        dists = np.sqrt((x_coords - x_coords[i]) ** 2 + (y_coords - y_coords[i]) ** 2)
        kde = np.sum(np.exp(-dists ** 2 / 2))
        kde_values[i] += kde
    kde_norm = (kde_values - np.min(kde_values)) / (np.max(kde_values) - 
np.min(kde_values) + 1e-5)
    quadrant_kde = np.zeros(4)
    for q in range(4):
        mask = quadrants == q
        if np.any(mask):
            quadrant_kde[q] = np.mean(kde_values[mask])
    quadrant_kde_norm = (quadrant_kde - np.min(quadrant_kde)) / (np.max(quadrant_kde) - 
np.min(quadrant_kde) + 1e-5)
    quadrant_weights = 1 - 0.05 * (quadrant_kde_norm / (np.sum(quadrant_kde_norm) + 1e-
5))
    node_degrees = np.sum(distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0, 
axis=1)
    connectivity_scores = np.zeros(len(unvisited_nodes))
    for idx, node in enumerate(unvisited_nodes):
        reachable = np.where(distance_matrix[node][unvisited_nodes] > 0)[0]
        second_hop = []
        for r_idx in reachable[:3]:
            
second_hop.extend(np.where(distance_matrix[unvisited_nodes[r_idx]][unvisited_nodes] > 
0)[0])
        unique_reachable = len(set(reachable) | set(second_hop))
        connectivity_scores[idx] = unique_reachable / len(unvisited_nodes)
    connectivity_norm = (connectivity_scores - np.min(connectivity_scores)) / 
(np.max(connectivity_scores) - np.min(connectivity_scores) + 1e-5)
    heading_angle = 0
    if len(recent_history) >= 2:
        prev_coords = distance_matrix[recent_history[-1]]
        prev_prev_coords = distance_matrix[recent_history[-2]]
        dx_h = prev_coords[0] - prev_prev_coords[0]
        dy_h = prev_coords[1] - prev_prev_coords[1]
        heading_angle = np.arctan2(dy_h, dx_h)
    phase_params = {
        'early': {'connectivity_weight': 0.3, 'density_weight': 0.2, 'distance_weight': 
0.5},
        'mid': {'angle_weight': 0.2, 'progress_weight': 0.3, 'lookahead_weight': 0.5},
        'late': {'dest_weight': 0.7, 'degree_weight': 0.3}
    }
   

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]
        connectivity = connectivity_scores[idx]
        is_backtracking = False
        if len(recent_history) >= 2:
            prev_node = recent_history[-1]
            prev_prev_node = recent_history[-2]
            direct_path = distance_matrix[prev_prev_node][node]
            detour_path = distance_matrix[prev_prev_node][prev_node] + 
distance_matrix[prev_node][node]
            if direct_path > 0 and detour_path / (direct_path + 1e-5) > 1.5 and 
visited_ratio > 0.1:
                is_backtracking = True
        if is_backtracking:
            continue
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        candidate_angle = np.arctan2(dy, dx)
        deviation = abs(candidate_angle - heading_angle)
        deviation = min(deviation, 2 * np.pi - deviation)
        deviation_deg = np.degrees(deviation)
        angle_penalty = 1.0
        if deviation_deg > 120:
            angle_penalty = 1.2
        early_score = dist_to_candidate * (1 - 0.5 * connectivity) / (density + 1e-5)
        late_score = dist_to_candidate + dist_candidate_to_dest * 0.9
        lookahead_scores = []
        lookahead_k = min(5, len(unvisited_nodes))
        nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_k]]
        for neighbor in nearest_unvisited:
            if neighbor != destination_node:
                dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                neighbor_dest = distance_matrix[neighbor][destination_node]
                lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                lookahead_scores.append(lookahead_score)
        if lookahead_scores:
            late_score += 0.4 * np.min(lookahead_scores)
        mid_score = dist_to_candidate
        if len(local_densities) > 1:
            avg_local_density = np.mean(local_densities)
            std_local_density = np.std(local_densities)
            local_progress = (avg_local_density - density) / (std_local_density + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            dynamic_weight = max(0.2, min(0.8, dynamic_weight))
            mid_score += dynamic_weight * dist_candidate_to_dest
        lookahead_depth = max(2, min(3, int(avg_local_density / (density + 1e-5) * 3)))
        nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_depth]]
        lookahead_scores = []
        for neighbor in nearest_unvisited:
            if neighbor != destination_node:
                dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                neighbor_dest = distance_matrix[neighbor][destination_node]
                lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                lookahead_scores.append(lookahead_score)
        if lookahead_scores:
            lookahead_scores = [s * (1 / (i + 1)) for i, s in 
enumerate(sorted(lookahead_scores))]
            mid_score += 0.2 * min(lookahead_scores)
        quadrant = int(candidate_angle / (np.pi / 2)) % 4
        quad_score = quadrant_weights[quadrant]
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quad_score = 1 + (1 - quad_score)
        early_score_norm = early_score / (np.max([early_score, 1]))
        mid_score_norm = mid_score / (np.max([mid_score, 1]))
        late_score_norm = late_score / (np.max([late_score, 1]))
        composite_score = (
            phase_weights['early'] * early_score_norm +
            phase_weights['mid'] * mid_score_norm +
            phase_weights['late'] * late_score_norm
        )
        composite_score *= quad_score
        composite_score *= angle_penalty
        perturbation = composite_score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        final_score = composite_score + perturbation
        if final_score < best_score:
            best_score = final_score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)
    return next_node
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Gradient 4

Gradient 5
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Figure 26: TSP Construct Example 1.
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Heuristic 2 (Obj Score: -6.841203707276776)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: np.ndarray, distance_matrix: 
np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)

    # Precompute distances to destination for all nodes
    dest_distances = distance_matrix[unvisited_nodes, destination_node]

    # Estimate local graph density
    current_degree = np.sum(distance_matrix[current_node] > 0) - 1  # Exclude self
    avg_neighbor_degree = np.mean([np.sum(distance_matrix[n] > 0) - 1 for n in unvisited_nodes])
    local_density = (current_degree + avg_neighbor_degree) / 2

    # Determine lookahead depth based on local density
    if local_density > 5:
        lookahead_depth = 3
    elif local_density > 2:
        lookahead_depth = 2
    else:
        lookahead_depth = 1

    # Path availability monitoring
    viable_path_threshold = 3
    use_fallback = len(unvisited_nodes) <= viable_path_threshold

    # Determine current phase for heuristic switching
    if visited_ratio < 0.3:
        heuristic_phase = 'early'
    elif visited_ratio < 0.7:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    # Precompute nearest unvisited neighbors for each candidate
    nearest_neighbor_cache = {}
    for node in unvisited_nodes:
        nearest_unvisited = unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])]
        nearest_neighbor_cache[node] = nearest_unvisited

    # Track step efficiency for dynamic weighting
    if not hasattr(select_next_node, "step_history"):
        select_next_node.step_history = []
    if hasattr(select_next_node, "prev_positions") and len(select_next_node.prev_positions) >= 2:
        prev_current = select_next_node.prev_positions[-2]
        prev_dest = select_next_node.prev_positions[-1]
        step_efficiency = distance_matrix[prev_current][current_node] / 
(distance_matrix[prev_current][destination_node] + 1e-8)
        select_next_node.step_history.append(step_efficiency)
    
    avg_efficiency = np.mean(select_next_node.step_history[-5:]) if select_next_node.step_history else 0.5

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]

        # Use fallback strategy if path availability is low
        if use_fallback:
            score = dist_to_candidate + dist_candidate_to_dest * 0.9
        else:
            # Phase-based heuristic selection
            if heuristic_phase == 'early':
                unvisited_neighbors = np.intersect1d(unvisited_nodes, nearest_neighbor_cache[node][:5])
                neighbor_contribution = len(unvisited_neighbors) + 1
                
                # Adaptive weighting based on phase and density
                density_factor = 1 + (local_density / 5)
                phase_factor = 1 - visited_ratio
                score = (dist_to_candidate * density_factor) / neighbor_contribution ** (0.5 + phase_factor * 
0.3)
                
            elif heuristic_phase == 'late':
                # Gradually reduce destination influence as we approach
                late_phase_weight = 1 - (1 - visited_ratio) * 0.7
                score = dist_to_candidate + dist_candidate_to_dest * late_phase_weight
            else:  # mid phase
                # Dynamic weighting based on both node count and path efficiency
                dynamic_weight = (0.4 + (visited_ratio - 0.3) * 0.5) * (avg_efficiency * 0.7 + 0.3)
                
                score = dist_to_candidate + dynamic_weight * dist_candidate_to_dest

                # Variable-step lookahead based on density
                nearest_unvisited = nearest_neighbor_cache[node][:3]
                lookahead_scores = []
                for neighbor in nearest_unvisited:
                    if neighbor != destination_node:
                        dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                        neighbor_dest = distance_matrix[neighbor][destination_node]
                        
                        # Recursive lookahead if depth > 1
                        if lookahead_depth > 1:
                            sub_lookahead = []
                            for sub_neighbor in nearest_neighbor_cache[neighbor][:2]:
                                sub_dist = distance_matrix[neighbor][sub_neighbor]
                                sub_dest = distance_matrix[sub_neighbor][destination_node]
                                sub_score = sub_dist + 0.2 * sub_dest
                                sub_lookahead.append(sub_score)
                            min_sub = np.min(sub_lookahead) if sub_lookahead else 0
                            lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest + 0.2 * min_sub
                        else:
                            lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                        
                        lookahead_scores.append(lookahead_score)
                
                if lookahead_scores:
                    score += (lookahead_depth * 0.2) * np.min(lookahead_scores)

        # Context-aware diversification
        tie_threshold = 0.02  # 2% of candidate score
        similar_scores = np.where(np.abs(best_score - score) < tie_threshold)[0]
     if len(similar_scores) > 0 and heuristic_phase != 'late':
            perturbation = score * np.random.uniform(0, 0.015)
            score += perturbation
        elif heuristic_phase != 'late':
            perturbation = score * np.random.uniform(0, 0.005)
            score += perturbation

        if score < best_score:
            best_score = score
            next_node = node

       # Update position history for efficiency tracking
       if not hasattr(select_next_node, "prev_positions"):
           select_next_node.prev_positions = []
       select_next_node.prev_positions.append(current_node)
       if len(select_next_node.prev_positions) > 5:
           select_next_node.prev_positions = select_next_node.prev_positions[-5:]

    return next_node

                        

Heuristic 1 (Obj Score: -6.5607966760939584)

def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 
np.ndarray, distance_matrix: np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = list()  # To track recent nodes for backtracking filter

    # Precompute distances to destination and local node density
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], 
axis=1)

    # Determine phase
    if visited_ratio < 0.2:
        heuristic_phase = 'early'
    elif visited_ratio < 0.7:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    # Estimate node degrees for graph awareness
    node_degrees = np.sum(distance_matrix[unvisited_nodes] > 0, axis=1)

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]

        # Skip if node is too close to recent nodes (backtracking-aware filter)
        is_too_close = any(np.linalg.norm(distance_matrix[current_node][n] - 
distance_matrix[current_node][node]) < 0.1 for n in recent_history[-5:])
        if is_too_close and visited_ratio > 0.1:
            continue

        # Phase-adaptive scoring logic
        if heuristic_phase == 'early':
            # Early phase: favor well-connected nodes in sparse graphs
            normalized_score = dist_to_candidate / (density + 1e-5)
            score = normalized_score / (degree + 1)
        elif heuristic_phase == 'late':
            # Late phase: deep lookahead with top 5 neighbors
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:5]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            lookahead_component = 0.4 * np.min(lookahead_scores) if lookahead_scores 
else 0
            score = dist_to_candidate + dist_candidate_to_dest * 0.9 + 
lookahead_component
        else:  # mid phase
            # Dynamic weighting normalized by local context
            local_progress = (local_densities.mean() - density) / 
(local_densities.std() + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            score = dist_to_candidate + max(0.2, min(0.8, dynamic_weight)) * 
dist_candidate_to_dest

            # 2-step lookahead with conditional perturbation
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:3]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            if lookahead_scores:
                score += 0.2 * np.min(lookahead_scores)

        # Local diversity boost with directional awareness
        if idx < len(unvisited_nodes) - 1 and np.isclose(score, best_score, atol=1e-2):
            # Directional perturbation toward under-explored quadrants
            angle = np.arctan2(distance_matrix[node][1] - 
distance_matrix[current_node][1],
                               distance_matrix[node][0] - 
distance_matrix[current_node][0])
            quadrant = int(angle / (np.pi / 2)) % 4
            quadrant_counts = [0, 0, 0, 0]
            for n in recent_history:
                a = np.arctan2(distance_matrix[n][1] - 
distance_matrix[current_node][1],
                               distance_matrix[n][0] - 
distance_matrix[current_node][0])
                q = int(a / (np.pi / 2)) % 4
                quadrant_counts[q] += 1
            score *= 1 - 0.05 * (quadrant_counts[quadrant] / (len(recent_history) + 1))

        # Small random perturbation only for tie-breaking
        if idx == 0 or not np.isclose(score, best_score, atol=1e-2):
            score += score * np.random.uniform(0, 0.005)
        else:
            score += score * np.random.uniform(0, 0.02)

        if score < best_score:
            best_score = score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)

    return next_node
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The Gradients:
Based on the evaluation and the algorithmic logic of the chosen code, here are the **five most important, targeted suggestions** to further improve and refine the implementation while 
preserving its strengths and avoiding weaknesses found in the rejected version:
---
### 1. **Improve Directional Awareness with Adaptive Quadrant Biasing**
- **Why**: The directional perturbation currently applies a fixed penalty per quadrant, which may not scale well with path complexity or graph size.
- **How**: Dynamically adjust quadrant penalties based on the **distribution of remaining nodes** across quadrants. For example, reduce penalties when a quadrant is sparsely populated 
and increase them in densely clustered areas.
- **Impact**: Enhances spatial diversity and prevents premature commitment to narrow directions, especially useful in grid-like or clustered graphs.
---
### 2. **Refine Backtracking Detection Using Distance Thresholding**
- **Why**: The current backtracking filter uses a simplistic Euclidean proximity check between nodes in the recent history, which may not reflect actual path redundancy.
- **How**: Replace or augment the proximity check with a **path efficiency metric**, such as comparing the distance from current → candidate → next node vs. a direct route from current → 
next node.
- **Impact**: Reduces inefficient detours and enhances real backtracking detection, especially in complex or asymmetric graphs.
---
### 3. **Introduce Adaptive Lookahead Depth Based on Node Proximity**
- **Why**: Fixed-depth lookahead (e.g., top 3 or 5 neighbors) may be excessive in sparse regions and insufficient in dense ones.
- **How**: Adjust the number of lookahead steps dynamically using a function of **local density** or **average distance to neighbors**. For instance, reduce lookahead depth in sparse areas 
to save computation and increase it in dense regions to improve decision quality.
- **Impact**: Balances computational cost and decision accuracy, making the heuristic more robust across varying graph structures.
---
### 4. **Use Relative Progress Metrics Instead of Absolute Phases**
- **Why**: Hard-coded phase boundaries (e.g., `visited_ratio < 0.2`) may not align with actual traversal progress in irregular graphs.
- **How**: Replace phase thresholds with **relative progress metrics**, such as comparing remaining nodes to a dynamic threshold based on graph diameter or current path deviation.
- **Impact**: Makes the phase logic more adaptive to topology, especially for graphs with uneven density or complex branching.
---
### 5. **Add a Local Graph Connectivity Check for Early-Phase Exploration**
- **Why**: In the early phase, choosing a node that leads to disconnected or weakly connected subgraphs can result in early dead-ends.
- **How**: Introduce a **local connectivity score** for each candidate node based on the number of reachable unvisited nodes within a small hop distance (e.g., 2 or 3 hops), computed using 
the distance matrix.
- **Impact**: Prevents premature isolation of subgraphs and improves early-phase node selection in disconnected or modular graphs.
---
These five suggestions aim to **extend the chosen code’s intelligent heuristics**, **reduce fragility in edge cases**, and **increase robustness across diverse graph types**, while staying 
aligned with the original logic and avoiding the pitfalls of the rejected implementation.

The losses:
### Evaluation of Chosen and Rejected Code
---
We are given two implementations of a `select_next_node` function, which presumably plays a role in a pathfinding or traversal algorithm (e.g., TSP, routing, or exploration of a graph). The **chosen code** was selected over the 
**rejected code**, and our task is to evaluate this choice by identifying **three strong advantages of the chosen code**, **three major weaknesses of the rejected code**, and then provide a concise explanation for the choice.
---
## ✅ Three Strong Advantages of the Chosen Code
### 1. **Sophisticated, Context-Aware Scoring with Phase Adaptation**
- The function divides traversal into **early**, **mid**, and **late** phases, adapting the selection heuristic accordingly.
- In early phases, it encourages **exploration and connectivity**, mid-phase balances **local and global distance**, and late-phase emphasizes **deep lookahead** and **goal-oriented decisions**.
- This **dynamic strategy** allows the algorithm to better adapt to different topologies and traversal contexts.

### 2. **Backtracking-Aware Exploration via Recent History Tracking**
- The function maintains a **short-term memory** (`recent_history`) of the last few visited nodes to **avoid backtracking or oscillating** between nearby nodes.
- This helps maintain **directional momentum**, prevents redundant exploration, and ensures smoother progress toward the destination.
- This is a significant advantage in graph exploration tasks, especially in dense or cyclic environments.

### 3. **Quadrant-Based Diversity Boost with Directional Perturbation**
- To avoid **local optima or clustering**, the function uses directional awareness (via angle-based quadrant tracking) to slightly **penalize nodes in already-explored directions**.
- This promotes **spatial diversity** and more **balanced exploration**, especially useful in spatial graphs or grids.
- This kind of directional heuristic is **absent or less sophisticated in the rejected code**.
---
## ❌ Three Major Weaknesses of the Rejected Code
### 1. **Less Adaptive Local Density Estimation**
- While the rejected code tries to estimate local density using **average neighbor degree**, it's a **simpler and less robust metric**.
- It doesn't fully integrate **local graph structure**, **mean distance**, or **connectivity** in a nuanced way, as the chosen code does through `local_densities` and `node_degrees`.

### 2. **Step Efficiency Tracking is Global and Inflexible**
- The rejected code tracks `step_efficiency` across iterations and adjusts weights based on average history.
- However, this is **not localized** to the node or path context and can **misrepresent actual traversal efficiency**.
- The chosen code instead **focuses on per-node adaptive heuristics**, making the decision more context-aware and dynamic.

### 3. **Weaker Tie-Breaking and Diversity Handling**
- The rejected code uses a **uniform random perturbation** for tie-breaking, which is less effective at ensuring **meaningful exploration diversity**.
- It lacks a directional or spatial component in perturbation, unlike the quadrant-based diversity boost in the chosen code.
- This can lead to **suboptimal path choices in dense or symmetric graphs**.
---
## � Final Evaluation: Why the Chosen Code Was Selected

The **chosen code** demonstrates a **more holistic and adaptive approach** to node selection by incorporating:
- **Phase-adaptive heuristics** that change based on progress,
- **Directional awareness** and **quadrant-based perturbation** for better exploration,
- **History tracking** to avoid redundant backtracking.

The **rejected code**, while functional, employs a **less nuanced understanding of graph topology**, has **simpler and less responsive heuristics**, and **fails to promote diversity** effectively in exploration.

Thus, the **chosen code is superior in terms of strategic decision-making, directional exploration, and adaptability**, making it better suited for complex, dynamic graph traversal tasks.
---
## ✅ Summary
| Aspect | Chosen Code | Rejected Code |
|-------|-------------|----------------|
| **Adaptive Phases** | ✔  ️Sophisticated phase-based logic | ⚠️  Simplified phase switching |
| **Diversity Handling** | ✔  ️Directional perturbation | ❌ Basic random tie-breaking |
| **Backtracking Avoidance** | ✔  ️Recent history tracking | ❌ No directional memory |
| **Local Density Estimation** | ✔  ️Uses mean distances and degrees | ⚠️  Relies on degree count only |
| **Lookahead Logic** | ✔  ️Deep, context-aware lookahead | ⚠️  Shallow and repetitive |

> ✅ **Chosen code is more intelligent, dynamic, and exploratory; rejected code is simpler and more static.**
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        # Backtracking detection with path efficiency metric
        is_backtracking = False
        if len(recent_history) >= 2:
            prev_node = recent_history[-1]
            prev_prev_node = recent_history[-2]
            direct_path = distance_matrix[prev_prev_node][node]
            detour_path = distance_matrix[prev_prev_node][prev_node] + 
distance_matrix[prev_node][node]
            if direct_path > 0 and detour_path / direct_path > 1.5 and visited_ratio > 
0.1:
                is_backtracking = True

        if is_backtracking:
            continue
        # Phase-adaptive scoring logic
        if heuristic_phase == 'early':
            normalized_score = dist_to_candidate / (density + 1e-5)
            score = normalized_score / (degree + 1) * (1 - 0.3 * connectivity)
        elif heuristic_phase == 'late':
            lookahead_k = min(5, len(unvisited_nodes))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_k]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            lookahead_component = 0.4 * np.min(lookahead_scores) if lookahead_scores 
else 0
            score = dist_to_candidate + dist_candidate_to_dest * 0.9 + 
lookahead_component
        else:  # mid phase
            local_progress = (local_densities.mean() - density) / 
(local_densities.std() + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            dynamic_weight = max(0.2, min(0.8, dynamic_weight))

            score = dist_to_candidate + dynamic_weight * dist_candidate_to_dest

            # Adaptive lookahead depth based on local density
            avg_local_density = np.mean(local_densities)
            lookahead_depth = max(2, min(5, int(avg_local_density / (density + 1e-5) * 
3)))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_depth]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            if lookahead_scores:
                score += 0.2 * np.min(lookahead_scores)

        # Directional awareness with adaptive quadrant biasing
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        angle = np.arctan2(dy, dx)
        quadrant = int(angle / (np.pi / 2)) % 4
        quadrant_score = quadrant_weights[quadrant]

        # Apply adaptive quadrant weighting
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quadrant_score = 1 + (1 - quadrant_score)  # Invert to boost sparse 
quadrants

        score *= quadrant_score

        # Small random perturbation for tie-breaking
        perturbation = score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        score += perturbation

        if score < best_score:
            best_score = score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)

    return next_node

Heuristic 1 (Obj Score: -6.403566895729184)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 
np.ndarray, distance_matrix: np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []  # Track recent nodes for backtracking detection

    # Precompute distances to destination and node densities
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], 
axis=1)

    # Estimate local density of remaining nodes
    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - 
remaining_center, axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + 
node_distances_to_center)

    # Determine adaptive phase based on relative graph diameter
    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5

    # Dynamic phase thresholds based on graph deviation
    if visited_ratio < 0.15 + path_deviation * 0.1:
        heuristic_phase = 'early'
    elif visited_ratio < 0.6 + path_deviation * 0.2:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    # Adaptive quadrant biasing based on node distribution
    current_coords = distance_matrix[current_node]
    quadrant_counts = [0, 0, 0, 0]
    for node in unvisited_nodes:
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        quadrant = int(np.arctan2(dy, dx) / (np.pi / 2)) % 4
        quadrant_counts[quadrant] += 1

    # Normalize quadrant penalties based on density
    quadrant_weights = [1 - 0.05 * (count / (len(unvisited_nodes) + 1)) for count in 
quadrant_counts]

    # Compute node degrees with reachability
    node_degrees = np.sum(distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0, 
axis=1)

    # Local connectivity check for early-phase exploration
    if heuristic_phase == 'early':
        connectivity_scores = []
        for node in unvisited_nodes:
            reachable_nodes = np.where(distance_matrix[node][unvisited_nodes] > 0)[0]
            second_hop = []
            for r_node in reachable_nodes[:3]:  # Limit to top 3 nearest for 
efficiency
                
second_hop.extend(np.where(distance_matrix[unvisited_nodes[r_node]][unvisited_nodes] 
> 0)[0])
            unique_reachable = len(set(reachable_nodes) | set(second_hop))
            connectivity_scores.append(unique_reachable / len(unvisited_nodes))
    else:
        connectivity_scores = [1.0] * len(unvisited_nodes)

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]
        connectivity = connectivity_scores[idx]
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Figure 27: TSP Construct Example 2.
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Heuristic 2 (Obj Score: -5.704301760167023)

def heuristics(distance_matrix: np.ndarray) -> np.ndarray:
    n = distance_matrix.shape[0]
    if n <= 1:
        return np.zeros_like(distance_matrix)
    if distance_matrix.shape[0] != distance_matrix.shape[1]:
        raise ValueError("Distance matrix must be square")
    if np.any(distance_matrix < 0):
        raise ValueError("Distance matrix must contain non-negative values")
    min_dist = np.finfo(distance_matrix.dtype).tiny
    distance_matrix_safe = np.where(distance_matrix == 0, min_dist, distance_matrix)
    alpha, beta, gamma, delta = 1.0, 1.0, 1.0, 1.0
    global_min = np.min(distance_matrix_safe[distance_matrix_safe > min_dist])
    inv_dist = 1.0 / distance_matrix_safe
    k_neighbors = max(1, min(3, n - 2))
    max_k = max(k_neighbors, min(2, n - 1))
    if max_k > 0:
        partitioned = np.partition(distance_matrix_safe, kth=max_k, axis=1)
        thresholds = partitioned[:, k_neighbors].reshape(-1, 1)
        nearest_neighbor_dists = partitioned[:, min(1, n - 1)].reshape(-1, 1)
    else:
        thresholds = np.full((n, 1), global_min)
        nearest_neighbor_dists = np.full((n, 1), global_min)
    connectivity_factors = np.exp(-alpha * distance_matrix_safe / thresholds)
    row_sums = np.sum(distance_matrix_safe, axis=1)
    col_sums = np.sum(distance_matrix_safe, axis=0)
    combined_centrality = n / (row_sums + col_sums)
    centrality_factors = combined_centrality.reshape(-1, 1)
    proximity_factors = global_min / distance_matrix_safe
    heuristic_matrix = (inv_dist ** alpha) * (centrality_factors ** beta) * 
(connectivity_factors ** gamma) * (proximity_factors ** delta)
    np.fill_diagonal(heuristic_matrix, 0)
    heuristic_matrix[heuristic_matrix < 1e-10] = 0
    max_val = np.max(heuristic_matrix)
    if max_val > 0:
        heuristic_matrix /= max_val
    return heuristic_matrix

   

Heuristic 1 (Obj Score: -5.696913841875297)

def heuristics(distance_matrix: np.ndarray) -> np.ndarray:
    n = distance_matrix.shape[0]
    if n <= 1:
        return np.zeros_like(distance_matrix)
    min_dist = np.finfo(distance_matrix.dtype).tiny
    distance_matrix_safe = np.where(distance_matrix == 0, min_dist, distance_matrix)
    inv_dist = 1.0 / distance_matrix_safe
    k_val = max(1, min(3, n // 10))
    kth_neighbor_idx = min(k_val, n - 1)
    partitioned = np.partition(distance_matrix_safe, kth=kth_neighbor_idx, axis=1)
    thresholds = partitioned[:, kth_neighbor_idx].reshape(-1, 1)
    nearest_neighbor_idx = min(1, n - 1)
    nearest_neighbor_dists = partitioned[:, nearest_neighbor_idx].reshape(-1, 1)
    alpha_conn = 1.0
    beta_prox = 1.0
    connectivity_factors = np.exp(-alpha_conn * distance_matrix_safe / thresholds)
    proximity_factors = np.exp(-distance_matrix_safe / (nearest_neighbor_dists * 
beta_prox))
    row_sums = np.sum(distance_matrix_safe, axis=1)
    col_sums = np.sum(distance_matrix_safe, axis=0)
    combined_centrality = (n - 1) / (row_sums + col_sums)
    centrality_factors = combined_centrality.reshape(-1, 1)
    cv = np.std(distance_matrix_safe) / np.mean(distance_matrix_safe)
    if cv < 0.01:
        heuristic_matrix = inv_dist
    else:
        heuristic_matrix = inv_dist * centrality_factors * connectivity_factors * 
proximity_factors
    np.fill_diagonal(heuristic_matrix, 0)
    max_val = np.max(heuristic_matrix)
    if max_val > 0:
        heuristic_matrix /= max_val
    return heuristic_matrix

           

This is loss:
Of course. Here is an evaluation from the perspective of algorithmic logic and performance.

### **Three Strongest Advantages of the Chosen Code**
1.  **Robust and Adaptive Multi-Factor Heuristic:** The chosen code synthesizes multiple sophisticated graph concepts into a single heuristic value. It combines:
    *   **Inverse Distance (`inv_dist`):** The fundamental principle that shorter edges are better.
    *   **Local Connectivity (`connectivity_factors`):** Uses an exponential decay based on a *k-th* neighbor distance. This dynamically adapts to the density around each node, making it robust for both clustered and uniformly 
distributed cities. A short edge in a sparse area is highly rewarded, while the same length edge in a dense cluster is less exceptional.
    *   **Proximity to Nearest Neighbor (`proximity_factors`):** Further emphasizes the importance of a node's very closest connection.
    *   **Centrality (`centrality_factors`):** Identifies hub-like nodes (with low total distance to others) and rewards edges connected to them, which is a powerful strategy for forming good tour skeletons.
    The final heuristic is a product of these well-justified factors, creating a rich and informative prior.
2.  **Intelligent Handling of Uniform Data:** The inclusion of the coefficient of variation (`cv`) check is a mark of a sophisticated algorithm. If the distance matrix is nearly uniform (e.g., all distances are ~1.0), the complex multi-factor 
calculation becomes noisy and adds no real value over the simple inverse distance. The code elegantly defaults to the simpler, faster calculation in this edge case, avoiding unnecessary computation without sacrificing performance.
3.  **Precise and Stable Numerical Handling:** The code avoids numerical instability and logical errors through careful construction.
    *   It uses `np.partition` for efficient calculation of order statistics (k-nearest neighbors) without the full overhead of a sort.
    *   It correctly handles the `kth` parameter logic (e.g., `min(k_val, n - 1)`) to avoid index-out-of-bounds errors for small graphs.
    *   The use of `np.exp(-x / y)` for factors creates smooth, well-bounded values between 0 and 1, which are stable for multiplication. This is superior to the rejected code's use of exponentiation with arbitrary powers, which can lead 
to numerical overflow or underflow.

### **Three Most Significant Weaknesses of the Rejected Code**
1.  **Theoretically Flawed "Proximity" Factor:** The `proximity_factors = global_min / distance_matrix_safe` factor is the most critical weakness. This factor assigns an extremely high, uniform value to *every* edge that is equal to the 
global minimum distance. This drowns out the nuanced signal from the other factors (connectivity, centrality) and effectively reduces the heuristic to `(1/dist) * (1/dist) = 1/dist^2`, which is a less common and often less effective 
heuristic than the chosen code's nuanced approach. It's a simplistic hack that undermines the entire multi-factor design.
2.  **Fragile and Incorrect Parameterization:** The code introduces arbitrary exponents (`alpha, beta, gamma, delta`) but sets them all to 1.0, making them pointless and adding complexity. More severely, the calculation for 
`k_neighbors` and `max_k` is convoluted and contains an off-by-one error (`kth=max_k` but then using `k_neighbors` to index). The logic for handling the `max_k > 0` case is also flawed for very small `n` and is less robust than the 
chosen code's implementation.
3.  **Less Adaptive and Justified Logic:** The heuristic lacks the intelligent check for uniform data present in the chosen code. It also uses `n / (row_sums + col_sums)` for centrality instead of `(n-1) / (row_sums + col_sums)`. While a 
minor point, the latter is a more standard formulation (resembling the reciprocal of average distance), demonstrating a more careful mathematical justification. The arbitrary thresholding (`heuristic_matrix[heuristic_matrix < 1e-10] = 0`) 
is also unnecessary if the factors are constructed correctly to begin with.

### **Final Concise Explanation**
The **chosen code is superior** because it constructs a robust, adaptive, and theoretically sound heuristic by intelligently combining multiple graph-based factors (connectivity, proximity, centrality) in a stable numerical framework. It 
includes a clever optimization for uniform data.
The **rejected code is inferior** primarily due to one critical flaw: its `proximity_factors` calculation is simplistic and undermines its entire multi-factor approach. It also suffers from fragile logic, unnecessary complexity (pointless 
exponents), and a lack of the adaptive features found in the chosen code.

Heuristic 3 (Obj Score: -5.681614961686941)
def heuristics(distance_matrix: np.ndarray) -> np.ndarray:
    n = distance_matrix.shape[0]
    if n <= 1:
        return np.zeros_like(distance_matrix)
    min_dist = np.finfo(distance_matrix.dtype).tiny
    distance_matrix_safe = np.where(distance_matrix == 0, min_dist, distance_matrix)
    inv_dist = 1.0 / distance_matrix_safe
    cv = np.std(distance_matrix_safe) / np.mean(distance_matrix_safe)
    if cv < 0.01:
        heuristic_matrix = inv_dist
    else:
        k_val = max(1, min(3, n // 10))
        kth_neighbor_idx = min(k_val, n - 1)
        partitioned = np.partition(distance_matrix_safe, kth=kth_neighbor_idx, axis=1)
        thresholds = partitioned[:, kth_neighbor_idx].reshape(-1, 1)
        nearest_neighbor_idx = min(1, n - 1)
        nearest_neighbor_dists = partitioned[:, nearest_neighbor_idx].reshape(-1, 1)
   

        alpha_conn = 1.0
        beta_prox = 1.0
        connectivity_factors = np.exp(-alpha_conn * distance_matrix_safe / thresholds)
        proximity_factors = np.exp(-distance_matrix_safe / (nearest_neighbor_dists * 
beta_prox))
        row_sums = np.sum(distance_matrix_safe, axis=1)
        col_sums = np.sum(distance_matrix_safe, axis=0)
        combined_centrality = (n - 1) / (row_sums + col_sums)
        centrality_factors = combined_centrality.reshape(-1, 1) + 
combined_centrality.reshape(1, -1)
        heuristic_matrix = inv_dist * centrality_factors * connectivity_factors * 
proximity_factors
    np.fill_diagonal(heuristic_matrix, 0)
    max_val = np.max(heuristic_matrix)
    if max_val > 0:
        heuristic_matrix /= max_val
    return heuristic_matrix    }

This is gradients:
1.  **Preserve the Multiplicative Heuristic Structure:** Combine inverse distance, local connectivity, proximity, and centrality factors multiplicatively. This structure is robust and adaptive, allowing each factor to contribute 
proportionally to the final heuristic value. Avoid simplistic overrides (like the rejected code's global-min-based proximity factor) that can dominate and nullify the benefits of other factors.

2.  **Incorporate the Uniform Data Check:** Always include a coefficient of variation (CV) check to detect near-uniform distance matrices. For such cases (e.g., `cv < 0.01`), default to the simpler and faster inverse distance heuristic. 
This prevents unnecessary computation of complex factors that provide no meaningful signal on uniform data, optimizing performance without sacrificing solution quality.

3.  **Use Stable and Adaptive Parameter Calculations:** Calculate adaptive parameters like `k_val` and `kth_neighbor_idx` robustly. Use `np.partition` for efficient k-nearest neighbor calculations. Ensure logic handles edge cases 
(e.g., `min(k_val, n - 1)`) to avoid index errors. Avoid hardcoded, arbitrary exponents or parameters that add complexity without benefit.

4.  **Employ Exponential Decay for Smooth Factor Scaling:** Construct factors like connectivity and proximity using `np.exp(-distance / scale)` to create smooth, well-bounded values between 0 and 1. This provides stable, 
interpretable multipliers and avoids the numerical instability (overflow/underflow) associated with arbitrary polynomial exponents.

5.  **Implement Standard Centrality Formulation:** Calculate centrality using `(n - 1) / (row_sums + col_sums)`, which represents the reciprocal of the average distance from a node. This is a standard and mathematically justified 
measure for identifying hub nodes. Avoid ad-hoc formulations like `n / (row_sums + col_sums)` which lack a clear theoretical basis.

Gradient 2
Gradient 1

Gradient 3

Gradient 4

Gradient 5

Figure 28: TSP ACO Example.
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Heuristic 2 (Obj Score: -8.442995121776157)
def select_next_city(state):
    instance = state["instance"]
    tour = state["tour"]
    unvisited = state["unvisited"]
    distance_matrix = state["distance_matrix"]
    n = len(instance)
    if len(tour) == 0:
        return unvisited[0]
    if len(unvisited) == 1:
        return unvisited[0]
    # Dynamic progress factor (0 to 1) based on visited/unvisited ratio
    progress = len(tour) / (len(tour) + len(unvisited))
    # Initialize memory penalty system
    if not hasattr(select_next_city, 'penalty_memory'):
        select_next_city.penalty_memory = {}
        select_next_city.step_counter = 0
    # Decay penalties
    select_next_city.penalty_memory = {city: penalty * 0.9 
                                      for city, penalty in select_next_city.penalty_memory.items() 
                                      if penalty > 0.01}
    select_next_city.step_counter += 1
    # Geometric clustering analysis using convex hull
    if len(unvisited) > 3:
        unvisited_coords = instance[unvisited]
        hull = unvisited_coords[np.lexsort((unvisited_coords[:, 1], unvisited_coords[:, 0]))]
        hull = hull[np.unique(hull, axis=0, return_index=True)[1]]
        if len(hull) > 2:
            from scipy.spatial import ConvexHull
            try:
                hull_indices = ConvexHull(hull).vertices
                hull_cities = [unvisited[np.where((unvisited_coords == hull[i]).all(axis=1))[0][0]] 
                              for i in hull_indices]
            except:
                hull_cities = unvisited[:min(5, len(unvisited))]
        else:
            hull_cities = unvisited[:min(5, len(unvisited))]
    else:
        hull_cities = unvisited
    scores = []
    candidates = []
    for candidate in unvisited:
        # Find distances to tour cities
        tour_dists = [distance_matrix[candidate][tour_city] for tour_city in tour]
        min_tour_dist = min(tour_dists)         
        # Lookahead: consider second nearest tour distance
        if len(tour_dists) > 1:
            second_min_tour_dist = np.partition(tour_dists, 1)[1]
        else:
            second_min_tour_dist = min_tour_dist
        # Calculate dispersion metrics among unvisited
        other_unvisited = [u for u in unvisited if u != candidate]
        if other_unvisited:
            unvisited_dists = [distance_matrix[candidate][other] for other in other_unvisited]
            avg_unvisited_dist = np.mean(unvisited_dists)
            min_unvisited_dist = min(unvisited_dists) if unvisited_dists else 1
        else:
            avg_unvisited_dist = 1
            min_unvisited_dist = 1
        # Dynamic weighting: shift from dispersion to completion
        dispersion_weight = 1.0 - progress * 0.7
        completion_weight = progress * 0.7
        # Base score components
        dispersion_score = min_tour_dist / (avg_unvisited_dist + 1e-8)
        completion_score = min_tour_dist
        # Lookahead component prevents premature clustering
        lookahead_penalty = min_tour_dist / (second_min_tour_dist + 1e-8)
        # Cluster priority: favor cities on convex hull early, interior later
        cluster_bonus = 2.0 if candidate in hull_cities else 1.0
        if progress > 0.5:
            cluster_bonus = 1.0 / cluster_bonus  # Reverse preference later
        # Combine scores with dynamic weights
        base_score = (dispersion_weight * dispersion_score + 
                     completion_weight * completion_score) * cluster_bonus * lookahead_penalty
        # Apply memory penalty
        memory_penalty = select_next_city.penalty_memory.get(candidate, 1.0)
        final_score = base_score * memory_penalty
        scores.append(final_score)
        candidates.append(candidate)
    # Diversification: occasionally select 2nd or 3rd best with probability
    scores = np.array(scores)
    sorted_indices = np.argsort(scores)[::-1]
    # Diversification probability inversely proportional to tour length
    diversification_prob = 0.3 / (1 + len(tour) * 0.1)
    if np.random.random() < diversification_prob and len(sorted_indices) > 1:
        # Choose between 2nd and 3rd best
        choice_idx = np.random.choice([1, 2]) if len(sorted_indices) > 2 else 1
        selected_idx = min(choice_idx, len(sorted_indices) - 1)
        selected_city = candidates[sorted_indices[selected_idx]]
    else:
        selected_city = candidates[sorted_indices[0]]
    # Update penalty memory for non-selected top candidates
    for i in range(min(3, len(sorted_indices))):
        city = candidates[sorted_indices[i]]
        if city != selected_city:
            select_next_city.penalty_memory[city] = select_next_city.penalty_memory.get(city, 1.0) * 0.8
    return selected_city

   

Heuristic 1 (Obj Score: -8.215961571034995)
def select_next_city(state):
    instance = state["instance"]
    tour = state["tour"]
    unvisited = state["unvisited"]
    distance_matrix = state["distance_matrix"]
    n = len(instance)
    if len(tour) == 0:
        return unvisited[0]
    if len(unvisited) == 1:
        return unvisited[0]
    progress = len(tour) / n
    candidate_set_size = max(5, int(len(unvisited) * 0.2))
    if len(unvisited) > candidate_set_size:
        tour_distances = np.min(distance_matrix[np.ix_(unvisited, tour)], axis=1)
        candidate_indices = np.argpartition(tour_distances, -candidate_set_size)[-candidate_set_size:]
        candidates = [unvisited[i] for i in candidate_indices]
    else:
        candidates = unvisited
    regret_weight = 0.1 + 0.8 * progress
    if len(unvisited) > 2:
        unvisited_coords = instance[unvisited]
        if len(unvisited) > 10:
            try:
                k = min(3, len(unvisited) // 5)
                if k > 1:
                    # Simple clustering using k-means++ initialization and Lloyd's algorithm
                    centroids = unvisited_coords[np.random.choice(len(unvisited_coords), k, replace=False)]
                    for _ in range(10):  # Fixed number of iterations
                        # Assign points to nearest centroid
                        distances = np.linalg.norm(unvisited_coords[:, np.newaxis] - centroids, axis=2)
                        labels = np.argmin(distances, axis=1)
                        # Update centroids
                        new_centroids = np.array([unvisited_coords[labels == i].mean(axis=0) if 
np.sum(labels == i) > 0 else centroids[i] 
                                                for i in range(k)])
                        if np.allclose(centroids, new_centroids):
                            break
                        centroids = new_centroids
                    # Calculate silhouette score manually
                    intra_dists = []
                    inter_dists = []
                    for i in range(len(unvisited_coords)):
                        same_cluster = labels == labels[i]
                        other_clusters = labels != labels[i]
                        if np.sum(same_cluster) > 1:
                            intra_dist = np.mean(np.linalg.norm(unvisited_coords[same_cluster] - 
unvisited_coords[i], axis=1))
                        else:
                            intra_dist = 0
                        if np.sum(other_clusters) > 0:
                            min_inter_dist = float('inf')
                            for cluster_id in range(k):
                                if cluster_id != labels[i] and np.sum(labels == cluster_id) > 0:
                                    cluster_dist = np.mean(np.linalg.norm(unvisited_coords[labels == 
cluster_id] - unvisited_coords[i], axis=1))
                                    min_inter_dist = min(min_inter_dist, cluster_dist)
                            inter_dist = min_inter_dist
                        else:
                            inter_dist = intra_dist
                        intra_dists.append(intra_dist)
                        inter_dists.append(inter_dist)
                    silhouette_scores = []
                    for i in range(len(unvisited_coords)):
                        if intra_dists[i] == 0 and inter_dists[i] == 0:
                            silhouette_scores.append(0)
                        else:
                            silhouette_scores.append((inter_dists[i] - intra_dists[i]) / 
max(intra_dists[i], inter_dists[i]))
                    silhouette_avg = np.mean(silhouette_scores) if silhouette_scores else 0
                    clustering_penalty = 1.0 + (1 - abs(silhouette_avg)) * 2.0
                else:
                    clustering_penalty = 1.0
            except:
                clustering_penalty = 1.0
        else:
            centroid = np.mean(unvisited_coords, axis=0)
            distances_to_centroid = np.linalg.norm(unvisited_coords - centroid, axis=1)
            clustering_penalty = 1.0 + np.std(distances_to_centroid) / (np.mean(distances_to_centroid) + 
1e-8)
    else:
        clustering_penalty = 1.0
    if len(tour) > 10:
        recent_cities = tour[-5:]
        recent_patterns = instance[recent_cities]
    else:
        recent_patterns = None
    use_lookahead = len(unvisited) <= max(10, n * 0.2)     
    best_score = -float('inf')
    best_city = candidates[0]
    for candidate in candidates:
        min_tour_dist = np.min(distance_matrix[candidate][tour])
        other_unvisited = [u for u in unvisited if u != candidate]
        if other_unvisited:
            avg_unvisited_dist = np.mean(distance_matrix[candidate][other_unvisited])
        else:
            avg_unvisited_dist = 0
        if len(tour) >= 2:
            insertion_costs = []
            for i in range(len(tour)):
                j = (i + 1) % len(tour)
                cost = (distance_matrix[tour[i]][candidate] + 
                       distance_matrix[candidate][tour[j]] - 
                       distance_matrix[tour[i]][tour[j]])
                insertion_costs.append(cost)
            best_insertion = np.min(insertion_costs)
            if len(insertion_costs) > 1:
                second_best = np.partition(insertion_costs, 1)[1]
                regret = second_best - best_insertion
            else:
                regret = best_insertion
        else:
            regret = distance_matrix[tour[0]][candidate]         
        if use_lookahead and len(other_unvisited) > 0:
            lookahead_costs = []
            sample_size = min(3, len(other_unvisited))
            next_candidates = np.random.choice(other_unvisited, size=sample_size, replace=False)
            for next_candidate in next_candidates:
                extended_tour = tour + [candidate]
                insertion_costs_next = []
                for i in range(len(extended_tour)):
                    j = (i + 1) % len(extended_tour)
                    cost_next = (distance_matrix[extended_tour[i]][next_candidate] + 
                               distance_matrix[next_candidate][extended_tour[j]] - 
                               distance_matrix[extended_tour[i]][extended_tour[j]])
                    insertion_costs_next.append(cost_next)
                lookahead_costs.append(np.min(insertion_costs_next))
            lookahead_penalty = np.mean(lookahead_costs) if lookahead_costs else 0
        else:
            lookahead_penalty = 0
        diversification_penalty = 0
        if recent_patterns is not None and len(recent_patterns) > 0:
            candidate_coord = instance[candidate].reshape(1, -1)
            min_dist_to_recent = np.min(np.linalg.norm(recent_patterns - candidate_coord, axis=1))
            avg_distance = np.mean(distance_matrix)
            if min_dist_to_recent < avg_distance * 0.1:
                diversification_penalty = -min_dist_to_recent * 0.5
        spatial_score = (min_tour_dist * (1 - progress) + avg_unvisited_dist * progress) / 
clustering_penalty
        regret_component = regret * regret_weight
        total_score = spatial_score + regret_component - lookahead_penalty * 0.3 + diversification_penalty
        if total_score > best_score:
            best_score = total_score
    return best_city
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This is loss:
1. [Strength of Chosen]: Combines regret-based insertion cost with spatial clustering analysis and lookahead evaluation.
2. [Weakness of Rejected]: Relies heavily on convex hull computation and memory penalties without meaningful lookahead.
3. [Key Reason for Gap]: Chosen algorithm uses regret calculation to anticipate future insertion costs, while rejected focuses on geometric properties without cost optimization.

Heuristic 3 (Obj Score: -8.163277565271834)
def select_next_city(state):
    instance = state["instance"]
    tour = state["tour"]
    unvisited = state["unvisited"]
    distance_matrix = state["distance_matrix"]
    n = len(instance)
    if len(tour) == 0:
        return unvisited[0]
    if len(unvisited) == 1:
        return unvisited[0]
    progress = len(tour) / n
    # Dynamic candidate set sizing based on clustering quality
    base_candidate_ratio = 0.2
    if len(unvisited) > 10:
        try:
            k = min(3, len(unvisited) // 5)
            if k > 1:
                unvisited_coords = instance[unvisited]
                centroids = unvisited_coords[np.random.choice(len(unvisited_coords), k, replace=False)]
                for _ in range(10):
                    distances = np.linalg.norm(unvisited_coords[:, np.newaxis] - centroids, axis=2)
                    labels = np.argmin(distances, axis=1)
                    new_centroids = np.array([unvisited_coords[labels == i].mean(axis=0) if np.sum(labels == i) 
> 0 else centroids[i] 
                                            for i in range(k)])
                    if np.allclose(centroids, new_centroids):
                        break
                    centroids = new_centroids
                intra_dists = []
                inter_dists = []
                for i in range(len(unvisited_coords)):
                    same_cluster = labels == labels[i]
                    other_clusters = labels != labels[i]
                    if np.sum(same_cluster) > 1:
                        intra_dist = np.mean(np.linalg.norm(unvisited_coords[same_cluster] - 
unvisited_coords[i], axis=1))
                    else:
                        intra_dist = 0
                    if np.sum(other_clusters) > 0:
                        min_inter_dist = float('inf')
                        for cluster_id in range(k):
                            if cluster_id != labels[i] and np.sum(labels == cluster_id) > 0:
                                cluster_dist = np.mean(np.linalg.norm(unvisited_coords[labels == cluster_id] - 
unvisited_coords[i], axis=1))
                                min_inter_dist = min(min_inter_dist, cluster_dist)
                        inter_dist = min_inter_dist
                    else:
                        inter_dist = intra_dist
                    intra_dists.append(intra_dist)
                    inter_dists.append(inter_dist)
                silhouette_scores = []
                for i in range(len(unvisited_coords)):
                    if intra_dists[i] == 0 and inter_dists[i] == 0:
                        silhouette_scores.append(0)
                    else:
                        silhouette_scores.append((inter_dists[i] - intra_dists[i]) / max(intra_dists[i], 
inter_dists[i]))
                silhouette_avg = np.mean(silhouette_scores) if silhouette_scores else 0
                clustering_quality = abs(silhouette_avg)
            else:
                clustering_quality = 0.5
        except:
            clustering_quality = 0.5
    else:
        clustering_quality = 0.5    
    # Expand candidate set when clustering is poor
    candidate_ratio_adjustment = 1.0 + (1 - clustering_quality) * 0.5
    candidate_set_size = max(5, int(len(unvisited) * base_candidate_ratio * candidate_ratio_adjustment))
    if len(unvisited) > candidate_set_size:
        tour_distances = np.min(distance_matrix[np.ix_(unvisited, tour)], axis=1)
        candidate_indices = np.argpartition(tour_distances, -candidate_set_size)[-candidate_set_size:]
        candidates = [unvisited[i] for i in candidate_indices]
    else:
        candidates = unvisited
    # Adaptive regret weighting based on clustering quality
    base_regret_weight = 0.1 + 0.8 * progress
    regret_weight = base_regret_weight * (1.0 + (1 - clustering_quality) * 1.5)
    # Tabu memory for cyclic behavior prevention
    tabu_tenure = min(7, len(tour) // 3)
    recent_cities = tour[-tabu_tenure:] if len(tour) >= tabu_tenure else tour
    tabu_penalty_factor = 2.0
    # Probabilistic exploration parameter
    exploration_prob = 0.08
    # Enhanced lookahead for endgame
    use_enhanced_lookahead = len(unvisited) <= max(10, n * 0.2)
    best_score = -float('inf')
    best_city = candidates[0]
    max_regret = -float('inf')
    max_regret_city = candidates[0]
    for candidate in candidates:
        # Calculate basic insertion metrics
        min_tour_dist = np.min(distance_matrix[candidate][tour])
        other_unvisited = [u for u in unvisited if u != candidate]
        if other_unvisited:
            avg_unvisited_dist = np.mean(distance_matrix[candidate][other_unvisited])
        else:
            avg_unvisited_dist = 0
   

        # Calculate regret
        if len(tour) >= 2:
            insertion_costs = []
            for i in range(len(tour)):
                j = (i + 1) % len(tour)
                cost = (distance_matrix[tour[i]][candidate] + 
                       distance_matrix[candidate][tour[j]] - 
                       distance_matrix[tour[i]][tour[j]])
                insertion_costs.append(cost)
            best_insertion = np.min(insertion_costs)
            if len(insertion_costs) > 1:
                second_best = np.partition(insertion_costs, 1)[1]
                regret = second_best - best_insertion
            else:
                regret = best_insertion
        else:
            regret = distance_matrix[tour[0]][candidate]
        # Track maximum regret for exploration
        if regret > max_regret:
            max_regret = regret
            max_regret_city = candidate
        # Enhanced lookahead evaluation
        lookahead_penalty = 0
        if use_enhanced_lookahead and len(other_unvisited) > 0:
            if len(unvisited) <= max(5, n * 0.1):  # Final 10% - use 2-step lookahead
                lookahead_depth = min(2, len(other_unvisited))
                sample_size = min(3, len(other_unvisited))
                next_candidates = np.random.choice(other_unvisited, size=sample_size, replace=False)
                lookahead_costs = []
                for next_candidate in next_candidates:
                    extended_tour = tour + [candidate]
                    # First insertion cost for next candidate
                    insertion_costs_next = []
                    for i in range(len(extended_tour)):
                        j = (i + 1) % len(extended_tour)
                        cost_next = (distance_matrix[extended_tour[i]][next_candidate] + 
                                   distance_matrix[next_candidate][extended_tour[j]] - 
                                   distance_matrix[extended_tour[i]][extended_tour[j]])
                        insertion_costs_next.append(cost_next)
                    first_step_cost = np.min(insertion_costs_next)
                    # Second step lookahead if possible
                    if lookahead_depth > 1 and len(other_unvisited) > 1:
                        remaining_after_next = [u for u in other_unvisited if u != next_candidate]
                        if remaining_after_next:
                            sample_second = min(2, len(remaining_after_next))
                            second_candidates = np.random.choice(remaining_after_next, size=sample_second, 
replace=False)  
                            second_step_costs = []
                            for second_candidate in second_candidates:
                                further_extended = extended_tour + [next_candidate]
                                insertion_costs_second = []
                                for i in range(len(further_extended)):
                                    j = (i + 1) % len(further_extended)
                                    cost_second = (distance_matrix[further_extended[i]][second_candidate] + 
                                                 distance_matrix[second_candidate][further_extended[j]] - 
                                                 distance_matrix[further_extended[i]][further_extended[j]])
                                    insertion_costs_second.append(cost_second)
                                second_step_costs.append(np.min(insertion_costs_second))
                            first_step_cost += 0.3 * np.mean(second_step_costs) if second_step_costs else 0
                    lookahead_costs.append(first_step_cost)
                lookahead_penalty = np.mean(lookahead_costs) if lookahead_costs else 0
            else:  # Standard 1-step lookahead
                sample_size = min(3, len(other_unvisited))
                next_candidates = np.random.choice(other_unvisited, size=sample_size, replace=False)
                lookahead_costs = []
                for next_candidate in next_candidates:
                    extended_tour = tour + [candidate]
                    insertion_costs_next = []
                    for i in range(len(extended_tour)):
                        j = (i + 1) % len(extended_tour)
                        cost_next = (distance_matrix[extended_tour[i]][next_candidate] + 
                                   distance_matrix[next_candidate][extended_tour[j]] - 
                                   distance_matrix[extended_tour[i]][extended_tour[j]])
                        insertion_costs_next.append(cost_next)
                    lookahead_costs.append(np.min(insertion_costs_next))
                lookahead_penalty = np.mean(lookahead_costs) if lookahead_costs else 0
        # Tabu penalty for recently visited patterns
        tabu_penalty = 0
        if recent_cities:
            candidate_coord = instance[candidate]
            min_dist_to_recent = float('inf')
            for recent_city in recent_cities:
                recent_coord = instance[recent_city]
                dist = np.linalg.norm(candidate_coord - recent_coord)
                if dist < min_dist_to_recent:
                    min_dist_to_recent = dist
            avg_city_distance = np.mean(distance_matrix)
            if min_dist_to_recent < avg_city_distance * 0.15:
                proximity_ratio = min_dist_to_recent / (avg_city_distance * 0.15)
                tabu_penalty = tabu_penalty_factor * (1.0 - proximity_ratio) * avg_city_distance
        # Composite scoring
        spatial_score = (min_tour_dist * (1 - progress) + avg_unvisited_dist * progress) / (1.0 + (1 - 
clustering_quality))
        regret_component = regret * regret_weight
        total_score = spatial_score + regret_component - lookahead_penalty * 0.4 - tabu_penalty
        if total_score > best_score:
            best_score = total_score
            best_city = candidate
    # Probabilistic exploration based on maximum regret
    if np.random.random() < exploration_prob:
        return max_regret_city
    return best_city

This is gradients:
1. Introduce adaptive regret weighting based on clustering quality - when silhouette scores indicate poor clustering, increase regret weight to prioritize insertion cost optimization over spatial distribution.

2. Add a probabilistic exploration mechanism where with small probability (e.g., 5-10%), select a candidate based purely on maximum regret rather than the composite score to escape local optima.

3. Implement a memory-based tabu component that temporarily penalizes recently selected city patterns, preventing cyclic behavior in the selection process.

4. Enhance lookahead evaluation by considering multiple insertion steps (2-step lookahead) for the final 20% of cities, trading computation for solution quality in the endgame.

5. Add dynamic candidate set sizing based on problem hardness - when clustering penalty is high (indicating dispersed cities), expand candidate set to consider more diverse options.

Gradient 1

Gradient 2

Gradient 2

Gradient 3

Gradient 3

Gradient 4

Gradient 4

Gradient 5

Gradient 5

Figure 29: TSP Random Insertion Example.
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E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, Large Language Models (LLMs) were used both as an auxiliary tool to improve the
clarity and readability of the manuscript and as experimental subjects, with their specific applications
detailed in the experimental section of the main text. They did not participate in the conception of
research ideas or the development of methodologies.
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