Skip to content

rexdivakar/HippocampAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HippocampAI — Enterprise Memory Engine for Intelligent AI Systems

PyPI version Python Versions Downloads License Documentation

HippocampAI is a production-ready, enterprise-grade memory engine that transforms how AI systems remember, reason, and learn from interactions. It provides persistent, intelligent memory capabilities that enable AI agents to maintain context across sessions, understand user preferences, detect behavioral patterns, and deliver truly personalized experiences.

🎯 The name "HippocampAI" draws inspiration from the hippocampus - the brain region responsible for memory formation and retrieval - reflecting our mission to give AI systems human-like memory capabilities.

Current Release: v0.2.5 — Production-ready with 102+ methods, 50+ API endpoints, and comprehensive monitoring.


🚀 Quick Start

Installation

# Install from PyPI
pip install hippocampai

# Or with all features
pip install "hippocampai[all]"

Your First Memory (30 seconds)

from hippocampai import MemoryClient

# Initialize client
client = MemoryClient()

# Store a memory
memory = client.remember(
    "I prefer oat milk in my coffee and work remotely on Tuesdays",
    user_id="alice",
    type="preference"
)

# Recall memories
results = client.recall("work preferences", user_id="alice")
print(f"Found: {results[0].memory.text}")

That's it! You now have intelligent memory for your AI application.


✨ Key Features

Feature Description Learn More
🧠 Intelligent Memory Hybrid search, importance scoring, semantic clustering Features Guide
⚡ High Performance 50-100x faster with Redis caching, 500-1000+ RPS Performance
🔍 Advanced Search Vector + BM25 + reranking, temporal queries Search Guide
📊 Analytics Pattern detection, habit tracking, behavioral insights Analytics
🤖 AI Integration Works with OpenAI, Anthropic, Groq, Ollama, local models Providers
📝 Session Management Conversation tracking, summaries, hierarchical sessions Sessions
🔄 Background Tasks Celery-powered async operations, scheduled jobs Celery Guide
📈 Monitoring Prometheus, Grafana, Flower dashboards Monitoring

🎯 Why Choose HippocampAI?

vs. Traditional Vector Databases

  • Built-in Intelligence: Pattern detection, insights, behavioral analysis
  • Memory Types: Facts, preferences, goals, habits, events (not just vectors)
  • Temporal Reasoning: Native time-based queries and narratives

vs. Other Memory Platforms

  • 5-100x Faster: Redis caching, optimized retrieval
  • Deployment Flexibility: Local, self-hosted, or SaaS
  • Full Control: Complete source access and customization

vs. Building In-House

  • Ready in Minutes: pip install hippocampai
  • 102+ Methods: Complete API covering all use cases
  • Production-Tested: Battle-tested in real applications

See detailed comparison →


📚 Documentation

Quick Links

What do you want to do? Go here
Get started in 5 minutes Getting Started Guide
See all 102+ functions Library Complete Reference
Use REST APIs SaaS API Complete Reference
Deploy to production User Guide
Configure settings Configuration Guide
Optimize Celery workers Celery Optimization & Tracing
Troubleshoot issues Troubleshooting Guide

Documentation Index

📖 Complete Documentation Index - Browse all 26 documentation files organized by topic

Core Documentation:

Advanced Topics:

Production & Operations:


🔧 Configuration

Local Development

# .env file
QDRANT_URL=http://localhost:6333
LLM_PROVIDER=ollama
LLM_MODEL=qwen2.5:7b-instruct

Cloud/Production

from hippocampai import MemoryClient
from hippocampai.adapters import GroqLLM

client = MemoryClient(
    llm_provider=GroqLLM(api_key="your-key"),
    qdrant_url="https://your-qdrant-cluster.com",
    redis_url="redis://your-redis:6379"
)

See all configuration options →


🚢 Deployment Options

Local Development

docker run -d -p 6333:6333 qdrant/qdrant
pip install hippocampai

Production Stack

git clone https://github.com/rexdivakar/HippocampAI.git
cd HippocampAI
docker-compose up -d  # Includes Qdrant, Redis, API, Celery, Monitoring

Includes:

  • FastAPI server (port 8000)
  • Celery workers with Beat scheduler
  • Flower monitoring (port 5555)
  • Prometheus metrics (port 9090)
  • Grafana dashboards (port 3000)

Production deployment guide →


💡 Use Cases

AI Agents & Chatbots

  • Personalized assistants with context across sessions
  • Customer support with interaction history
  • Educational tutoring that adapts to students

Enterprise Applications

  • Knowledge management for teams
  • CRM enhancement with interaction intelligence
  • Compliance monitoring and audit trails

Research & Analytics

  • Behavioral pattern analysis
  • Long-term trend detection
  • User experience personalization

More use cases →


📊 Performance

Metric Performance
Query Speed 50-100x faster with caching
Throughput 500-1000+ requests/second
Latency 1-2ms (cached), 5-15ms (uncached)
Availability 99.9% uptime

See benchmarks →


🤝 Community & Support


🛠️ Examples

Interactive Chat Demo

Try the fully-functional chatbot with persistent memory:

# Set your Groq API key
export GROQ_API_KEY="your-api-key-here"

# Run the interactive chat
python chat.py

Features:

  • Persistent memory across sessions
  • Context-aware responses
  • Pattern detection
  • Memory search
  • Session summaries

Complete chat demo guide →

Code Examples

Over 15 working examples in the examples/ directory:

# Basic operations
python examples/01_basic_usage.py

# Advanced features
python examples/11_intelligence_features_demo.py
python examples/13_temporal_reasoning_demo.py
python examples/14_cross_session_insights_demo.py

# Run all examples
./run_examples.sh

View all examples →


🤝 Contributing

We welcome contributions! See our Contributing Guide for details.

git clone https://github.com/rexdivakar/HippocampAI.git
cd HippocampAI
pip install -e ".[dev]"
pytest

📄 License

Apache 2.0 - Use freely in commercial and open-source projects.


🌟 Star History

If you find HippocampAI useful, please star the repo! It helps others discover the project.


Built with ❤️ by the HippocampAI team


Quick Reference Card

from hippocampai import MemoryClient

client = MemoryClient()

# Core operations
memory = client.remember("text", user_id="alice")
results = client.recall("query", user_id="alice", k=5)
client.update_memory(memory_id, text="new text")
client.delete_memory(memory_id)

# Intelligence
facts = client.extract_facts("John works at Google")
entities = client.extract_entities("Elon Musk founded SpaceX")
patterns = client.detect_patterns(user_id="alice")

# Analytics
habits = client.detect_habits(user_id="alice")
changes = client.track_behavior_changes(user_id="alice")
stats = client.get_memory_statistics(user_id="alice")

# Sessions
session = client.create_session(user_id="alice", title="Planning")
client.complete_session(session.id, generate_summary=True)

# See docs/LIBRARY_COMPLETE_REFERENCE.md for all 102+ methods

📚 Full API Reference | 🌐 REST API Reference

Contributors 4

  •  
  •  
  •  
  •  

Languages