Skip to content

pgvector/pgvector

Repository files navigation

pgvector

Open-source vector similarity search for Postgres

Store your vectors with the rest of your data. Supports:

  • exact and approximate nearest neighbor search
  • single-precision, half-precision, binary, and sparse vectors
  • L2 distance, inner product, cosine distance, L1 distance, Hamming distance, and Jaccard distance
  • any language with a Postgres client

Plus ACID compliance, point-in-time recovery, JOINs, and all of the other great features of Postgres

Build Status

Installation

Linux and Mac

Compile and install the extension (supports Postgres 13+)

cd /tmp
git clone --branch v0.8.1 https://github.com/pgvector/pgvector.git
cd pgvector
make
make install # may need sudo

See the installation notes if you run into issues

You can also install it with Docker, Homebrew, PGXN, APT, Yum, pkg, or conda-forge, and it comes preinstalled with Postgres.app and many hosted providers. There are also instructions for GitHub Actions.

Windows

Ensure C++ support in Visual Studio is installed and run x64 Native Tools Command Prompt for VS [version] as administrator. Then use nmake to build:

set "PGROOT=C:\Program Files\PostgreSQL\17"
cd %TEMP%
git clone --branch v0.8.1 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install

See the installation notes if you run into issues

You can also install it with Docker or conda-forge.

Getting Started

Enable the extension (do this once in each database where you want to use it)

CREATE EXTENSION vector;

Create a vector column with 3 dimensions

CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

Insert vectors

INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

Get the nearest neighbors by L2 distance

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

Also supports inner product (<#>), cosine distance (<=>), and L1 distance (<+>)

Note: <#> returns the negative inner product since Postgres only supports ASC order index scans on operators

Storing

Create a new table with a vector column

CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

Or add a vector column to an existing table

ALTER TABLE items ADD COLUMN embedding vector(3);

Also supports half-precision, binary, and sparse vectors

Insert vectors

INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

Or load vectors in bulk using COPY (example)

COPY items (embedding) FROM STDIN WITH (FORMAT BINARY);

Upsert vectors

INSERT INTO items (id, embedding) VALUES (1, '[1,2,3]'), (2, '[4,5,6]')
    ON CONFLICT (id) DO UPDATE SET embedding = EXCLUDED.embedding;

Update vectors

UPDATE items SET embedding = '[1,2,3]' WHERE id = 1;

Delete vectors

DELETE FROM items WHERE id = 1;

Querying

Get the nearest neighbors to a vector

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

Supported distance functions are:

  • <-> - L2 distance
  • <#> - (negative) inner product
  • <=> - cosine distance
  • <+> - L1 distance
  • <~> - Hamming distance (binary vectors)
  • <%> - Jaccard distance (binary vectors)

Get the nearest neighbors to a row

SELECT * FROM items WHERE id != 1 ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;

Get rows within a certain distance

SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with ORDER BY and LIMIT to use an index

Distances

Get the distance

SELECT embedding <-> '[3,1,2]' AS distance FROM items;

For inner product, multiply by -1 (since <#> returns the negative inner product)

SELECT (embedding <#> '[3,1,2]') * -1 AS inner_product FROM items;

For cosine similarity, use 1 - cosine distance

SELECT 1 - (embedding <=> '[3,1,2]') AS cosine_similarity FROM items;

Aggregates

Average vectors

SELECT AVG(embedding) FROM items;

Average groups of vectors

SELECT category_id, AVG(embedding) FROM items GROUP BY category_id;

Indexing

By default, pgvector performs exact nearest neighbor search, which provides perfect recall.

You can add an index to use approximate nearest neighbor search, which trades some recall for speed. Unlike typical indexes, you will see different results for queries after adding an approximate index.

Supported index types are:

HNSW

An HNSW index creates a multilayer graph. It has better query performance than IVFFlat (in terms of speed-recall tradeoff), but has slower build times and uses more memory. Also, an index can be created without any data in the table since there isn’t a training step like IVFFlat.

Add an index for each distance function you want to use.

L2 distance

CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);

Note: Use halfvec_l2_ops for halfvec and sparsevec_l2_ops for sparsevec (and similar with the other distance functions)

Inner product

CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);

Cosine distance

CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);

L1 distance

CREATE INDEX ON items USING hnsw (embedding vector_l1_ops);

Hamming distance

CREATE INDEX ON items USING hnsw (embedding bit_hamming_ops);

Jaccard distance

CREATE INDEX ON items USING hnsw (embedding bit_jaccard_ops);

Supported types are:

  • vector - up to 2,000 dimensions
  • halfvec - up to 4,000 dimensions
  • bit - up to 64,000 dimensions
  • sparsevec - up to 1,000 non-zero elements

Index Options

Specify HNSW parameters

  • m - the max number of connections per layer (16 by default)
  • ef_construction - the size of the dynamic candidate list for constructing the graph (64 by default)
CREATE INDEX ON items USING hnsw (embedding vector_l2_ops) WITH (m = 16, ef_construction = 64);

A higher value of ef_construction provides better recall at the cost of index build time / insert speed.

Query Options