StatsLib is a templated C++ library of statistical distribution functions, featuring unique compile-time computing capabilities and seamless integration with several popular linear algebra libraries.
Features:
- A header-only library of probability density functions, cumulative distribution functions, quantile functions, and random sampling methods.
- Functions are written in C++11
constexprformat, enabling the library to operate as both a compile-time and run-time computation engine. - Designed with a simple R-like syntax.
- Optional vector-matrix functionality with wrappers to support:
- Matrix-based operations are parallelizable with OpenMP.
- Released under a permissive, non-GPL license.
- Distributions
- Installation
- Documentation
- Jupyter Notebook
- Options
- Syntax and Examples
- Compile-time Computation Capabilities
- Author and License
Functions to compute the cdf, pdf, quantile, as well as random sampling methods, are available for the following distributions:
- Bernoulli
- Beta
- Binomial
- Cauchy
- Chi-squared
- Exponential
- F
- Gamma
- Inverse-Gamma
- Inverse-Gaussian
- Laplace
- Logistic
- Log-Normal
- Normal (Gaussian)
- Poisson
- Rademacher
- Student's t
- Uniform
- Weibull
In addition, pdf and random sampling functions are available for several multivariate distributions:
- inverse-Wishart
- Multivariate Normal
- Wishart
StatsLib is a header-only library. Simply add the header files to your project using
#include "stats.hpp"The only dependency is the latest version of GCEM and a C++11 compatible compiler.
Full documentation is available online:
A PDF version of the documentation is available here.
You can test the library online using an interactive Jupyter notebook:
The following options should be declared before including the StatsLib header files.
- For inline-only functionality (i.e., no
constexprspecifiers):
#define STATS_GO_INLINE- OpenMP functionality is enabled by default if the
_OPENMPmacro is detected (e.g., by invoking-fopenmpwith GCC or Clang). To explicitly enable OpenMP features use:
#define STATS_USE_OPENMP- To disable OpenMP functionality:
#define STATS_DONT_USE_OPENMP- To use StatsLib with Armadillo, Blaze or Eigen:
#define STATS_ENABLE_ARMA_WRAPPERS
#define STATS_ENABLE_BLAZE_WRAPPERS
#define STATS_ENABLE_EIGEN_WRAPPERS- To enable wrappers for
std::vector:
#define STATS_ENABLE_STDVEC_WRAPPERSFunctions are called using an R-like syntax. Some general rules:
- density functions:
stats::d*. For example, the Normal (Gaussian) density is called using
stats::dnorm(<value>,<mean parameter>,<standard deviation>);- cumulative distribution functions:
stats::p*. For example, the Gamma CDF is called using
stats::pgamma(<value>,<shape parameter>,<scale parameter>);- quantile functions:
stats::q*. For example, the Beta quantile is called using
stats::qbeta(<value>,<a parameter>,<b parameter>);- random sampling:
stats::r*. For example, to generate a single draw from the Logistic distribution:
stats::rlogis(<location parameter>,<scale parameter>,<seed value or random number engine>);All of these functions have matrix-based equivalents using Armadillo, Blaze, and Eigen dense matrices.
- The pdf, cdf, and quantile functions can take matrix-valued arguments. For example,
// Using Armadillo:
arma::mat norm_pdf_vals = stats::dnorm(arma::ones(10,20),1.0,2.0);- The randomization functions (
r*) can output random matrices of arbitrary size. For example, For example, the following code will generate a 100-by-50 matrix of iid draws from a Gamma(3,2) distribution:
// Armadillo:
arma::mat gamma_rvs = stats::rgamma<arma::mat>(100,50,3.0,2.0);
// Blaze:
blaze::DynamicMatrix<double> gamma_rvs = stats::rgamma<blaze::DynamicMatrix<double>>(100,50,3.0,2.0);
// Eigen:
Eigen::MatrixXd gamma_rvs = stats::rgamma<Eigen::MatrixXd>(100,50,3.0,2.0);- All matrix-based operations are parallelizable with OpenMP. For GCC and Clang compilers, simply include the
-fopenmpoption during compilation.
Random number seeding is available in two forms: seed values and random number engines.
- Seed values are passed as unsigned integers. For example, to generate a draw from a normal distribution N(1,2) with seed value 1776:
stats::rnorm(1,2,1776);- Random engines in StatsLib use the 64-bit Mersenne-Twister generator (
std::mt19937_64) and are passed by reference. Example:
std::mt19937_64 engine(1776);
stats::rnorm(1,2,engine);More examples with code:
// evaluate the normal PDF at x = 1, mu = 0, sigma = 1
double dval_1 = stats::dnorm(1.0,0.0,1.0);
// evaluate the normal PDF at x = 1, mu = 0, sigma = 1, and return the log value
double dval_2 = stats::dnorm(1.0,0.0,1.0,true);
// evaluate the normal CDF at x = 1, mu = 0, sigma = 1
double pval = stats::pnorm(1.0,0.0,1.0);
// evaluate the Laplacian quantile at p = 0.1, mu = 0, sigma = 1
double qval = stats::qlaplace(0.1,0.0,1.0);
// draw from a t-distribution dof = 30
double rval = stats::rt(30);
// matrix output
arma::mat beta_rvs = stats::rbeta<arma::mat>(100,100,3.0,2.0);
// matrix input
arma::mat beta_cdf_vals = stats::pbeta(beta_rvs,3.0,2.0);StatsLib is designed to operate equally well as a compile-time computation engine. Compile-time computation allows the compiler to replace function calls (e.g., dnorm(0,0,1)) with static values in the source code. That is, functions are evaluated during the compilation process, rather than at run-time. This capability is made possible due to the templated constexpr design of the library and can be verified by inspecting the assembly code generated by the compiler.
The compile-time features are enabled using the constexpr specifier. The example below computes the pdf, cdf, and quantile function of the Laplace distribution.
#include "stats.hpp"
int main()
{
constexpr double dens_1 = stats::dlaplace(1.0,1.0,2.0); // answer = 0.25
constexpr double prob_1 = stats::plaplace(1.0,1.0,2.0); // answer = 0.5
constexpr double quant_1 = stats::qlaplace(0.1,1.0,2.0); // answer = -2.218875...
return 0;
}Assembly code generated by Clang without any optimization:
LCPI0_0:
.quad -4611193153885729483 ## double -2.2188758248682015
LCPI0_1:
.quad 4602678819172646912 ## double 0.5
LCPI0_2:
.quad 4598175219545276417 ## double 0.25000000000000006
.section __TEXT,__text,regular,pure_instructions
.globl _main
.p2align 4, 0x90
_main: ## @main
push rbp
mov rbp, rsp
xor eax, eax
movsd xmm0, qword ptr [rip + LCPI0_0] ## xmm0 = mem[0],zero
movsd xmm1, qword ptr [rip + LCPI0_1] ## xmm1 = mem[0],zero
movsd xmm2, qword ptr [rip + LCPI0_2] ## xmm2 = mem[0],zero
mov dword ptr [rbp - 4], 0
movsd qword ptr [rbp - 16], xmm2
movsd qword ptr [rbp - 24], xmm1
movsd qword ptr [rbp - 32], xmm0
pop rbp
retKeith O'Hara
Apache Version 2