Skip to content

Commit e1f60a6

Browse files
authored
Merge pull request #6 from dpeerlab/issue-3
Fix for issue 3
2 parents 9e45884 + f25354d commit e1f60a6

File tree

3 files changed

+6
-7
lines changed

3 files changed

+6
-7
lines changed

setup.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
import os
21
import sys
32
import shutil
43
from subprocess import call
@@ -23,7 +22,7 @@
2322
setup(name='harmony',
2423
version=__version__, # read in from the exec of version.py; ignore error
2524
description='Harmony is a unified framework for data visualization, analysis and interpretation of scRNA-seq data measured across discrete time points',
26-
url='https://github.com/manusetty/harmony',
25+
url='https://github.com/dpeerlab/harmony',
2726
author='Manu Setty',
2827
author_email='[email protected]',
2928
package_dir={'': 'src'},
@@ -35,6 +34,6 @@
3534
'sklearn',
3635
'fa2',
3736
'matplotlib>=2.2.2',
38-
'seaborn>=0.8.1'
37+
'seaborn>=0.8.1'
3938
],
4039
)

src/harmony/utils.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -84,8 +84,8 @@ def hvg_genes(norm_df, no_genes=1000):
8484
with warnings.catch_warnings():
8585
warnings.simplefilter('ignore')
8686
disp_mad_bin = disp_grouped.apply(robust.mad)
87-
df['dispersion_norm'] = np.abs((df['dispersion'].values - disp_median_bin[df['mean_bin']].values)) \
88-
/ disp_mad_bin[df['mean_bin']].values
87+
df['dispersion_norm'] = np.abs((df['dispersion'].values - disp_median_bin[df['mean_bin'].values].values)) \
88+
/ disp_mad_bin[df['mean_bin'].values].values
8989

9090
# Subset of genes
9191
use_genes = df['dispersion_norm'].sort_values().index[::-1][:no_genes]
@@ -102,7 +102,7 @@ def run_pca(data, n_components=300, var_explained=0.85):
102102
number of components = min(n_components, components explaining var_explained)
103103
:return: PCA projections of the data and the explained variance
104104
"""
105-
init_components = min([n_components, data.shape[1]])
105+
init_components = min([n_components, data.shape[0]])
106106
pca = PCA(n_components=init_components, svd_solver='randomized')
107107
pca.fit(data)
108108
if pca.explained_variance_ratio_.sum() >= 0.85:

src/harmony/version.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
__version__ = "0.1"
1+
__version__ = "0.1.1"

0 commit comments

Comments
 (0)