@@ -44,32 +44,32 @@ prediction = flrn$predict_newdata(newdata, task)
4444prediction
4545# > <PredictionRegr> for 3 observations:
4646# > row_ids truth response
47- # > 1 NA 436.4899
48- # > 2 NA 436.6391
49- # > 3 NA 456.0920
47+ # > 1 NA 433.6001
48+ # > 2 NA 438.1410
49+ # > 3 NA 457.1800
5050prediction = flrn $ predict(task , 142 : 144 )
5151prediction
5252# > <PredictionRegr> for 3 observations:
5353# > row_ids truth response
54- # > 1 461 456.6918
55- # > 2 390 411.1894
56- # > 3 432 431.1121
54+ # > 1 461 456.5852
55+ # > 2 390 411.2524
56+ # > 3 432 431.9528
5757prediction $ score(msr(" regr.rmse" ))
5858# > regr.rmse
59- # > 12.49451
59+ # > 12.53208
6060
6161flrn = ForecastLearner $ new(lrn(" regr.ranger" ), 1 : 12 )
6262resampling = rsmp(" forecast_holdout" , ratio = 0.9 )
6363rr = resample(task , flrn , resampling )
6464rr $ aggregate(msr(" regr.rmse" ))
6565# > regr.rmse
66- # > 48.87653
66+ # > 47.88555
6767
6868resampling = rsmp(" forecast_cv" )
6969rr = resample(task , flrn , resampling )
7070rr $ aggregate(msr(" regr.rmse" ))
7171# > regr.rmse
72- # > 25.25769
72+ # > 24.16737
7373```
7474
7575### Multivariate
@@ -89,34 +89,34 @@ flrn = ForecastLearner$new(lrn("regr.ranger"), 1:12)$train(new_task)
8989prediction = flrn $ predict(new_task , 142 : 144 )
9090prediction $ score(msr(" regr.rmse" ))
9191# > regr.rmse
92- # > 13.44279
92+ # > 13.08595
9393
9494row_ids = new_task $ nrow - 0 : 2
9595flrn $ predict_newdata(new_task $ data(rows = row_ids ), new_task )
9696# > <PredictionRegr> for 3 observations:
9797# > row_ids truth response
98- # > 1 432 434.0366
99- # > 2 390 436.9707
100- # > 3 461 458.7455
98+ # > 1 432 433.6868
99+ # > 2 390 430.1164
100+ # > 3 461 453.4341
101101newdata = new_task $ data(rows = row_ids , cols = new_task $ feature_names )
102102flrn $ predict_newdata(newdata , new_task )
103103# > <PredictionRegr> for 3 observations:
104104# > row_ids truth response
105- # > 1 NA 434.0366
106- # > 2 NA 436.9707
107- # > 3 NA 458.7455
105+ # > 1 NA 433.6868
106+ # > 2 NA 430.1164
107+ # > 3 NA 453.4341
108108
109109resampling = rsmp(" forecast_holdout" , ratio = 0.9 )
110110rr = resample(new_task , flrn , resampling )
111111rr $ aggregate(msr(" regr.rmse" ))
112112# > regr.rmse
113- # > 50.14024
113+ # > 51.17934
114114
115115resampling = rsmp(" forecast_cv" )
116116rr = resample(new_task , flrn , resampling )
117117rr $ aggregate(msr(" regr.rmse" ))
118118# > regr.rmse
119- # > 26.23039
119+ # > 27.53512
120120```
121121
122122### mlr3pipelines integration
@@ -131,7 +131,7 @@ glrn = as_learner(graph %>>% flrn)$train(task)
131131prediction = glrn $ predict(task , 142 : 144 )
132132prediction $ score(msr(" regr.rmse" ))
133133# > regr.rmse
134- # > 13.82398
134+ # > 16.0287
135135```
136136
137137### Example: Forecasting electricity demand
@@ -174,13 +174,13 @@ prediction = glrn$predict_newdata(newdata, task)
174174prediction
175175# > <PredictionRegr> for 14 observations:
176176# > row_ids truth response
177- # > 1 NA 186.6940
178- # > 2 NA 190.8129
179- # > 3 NA 183.0273
177+ # > 1 NA 186.9874
178+ # > 2 NA 191.3284
179+ # > 3 NA 183.5836
180180# > --- --- ---
181- # > 12 NA 214.4948
182- # > 13 NA 218.4061
183- # > 14 NA 220.0571
181+ # > 12 NA 216.9396
182+ # > 13 NA 221.4096
183+ # > 14 NA 222.3596
184184```
185185
186186### Global Forecasting
@@ -213,14 +213,14 @@ flrn = ForecastLearner$new(lrn("regr.ranger"), 1:3)$train(task)
213213prediction = flrn $ predict(task , 4460 : 4464 )
214214prediction $ score(msr(" regr.rmse" ))
215215# > regr.rmse
216- # > 22058.4
216+ # > 22494.87
217217
218218flrn = ForecastLearner $ new(lrn(" regr.ranger" ), 1 : 3 )
219219resampling = rsmp(" forecast_holdout" , ratio = 0.9 )
220220rr = resample(task , flrn , resampling )
221221rr $ aggregate(msr(" regr.rmse" ))
222222# > regr.rmse
223- # > 94136.08
223+ # > 91483.84
224224```
225225
226226### Example: Global vs Local Forecasting
@@ -255,7 +255,7 @@ row_ids = tab[year >= 2015, row_id]
255255prediction = flrn $ predict(task , row_ids )
256256prediction $ score(msr(" regr.rmse" ))
257257# > regr.rmse
258- # > 33009.95
258+ # > 32875.1
259259
260260# global forecasting
261261task = tsibbledata :: aus_livestock | >
@@ -276,7 +276,7 @@ row_ids = tab[year >= 2015 & state == "Western Australia", row_id]
276276prediction = flrn $ predict(task , row_ids )
277277prediction $ score(msr(" regr.rmse" ))
278278# > regr.rmse
279- # > 30965.86
279+ # > 31399.84
280280```
281281
282282### Example: generate new data
@@ -470,6 +470,16 @@ learner$predict_newdata(newdata, task)
470470library(mlr3pipelines )
471471
472472task = tsk(" airpassengers" )
473- pop = po(" fcst.lags" )
473+ pop = po(" fcst.lags" , lag = 1 : 12 )
474474pop $ train(list (task ))[[1L ]]
475+ # > <TaskRegr:airpassengers> (144 x 14): Monthly Airline Passenger Numbers 1949-1960
476+ # > * Target: passengers
477+ # > * Properties: ordered
478+ # > * Features (13):
479+ # > - dbl (12): passengers_lag_1, passengers_lag_10, passengers_lag_11,
480+ # > passengers_lag_12, passengers_lag_2, passengers_lag_3,
481+ # > passengers_lag_4, passengers_lag_5, passengers_lag_6,
482+ # > passengers_lag_7, passengers_lag_8, passengers_lag_9
483+ # > - dte (1): date
484+ # > * Order by: date
475485```
0 commit comments