Skip to content

Commit dd33d4f

Browse files
committed
docs: readme
1 parent b72ee04 commit dd33d4f

File tree

2 files changed

+26
-24
lines changed

2 files changed

+26
-24
lines changed

README.Rmd

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -27,8 +27,10 @@ Extending mlr3 to time series forecasting.
2727
[![Mattermost](https://img.shields.io/badge/chat-mattermost-orange.svg)](https://lmmisld-lmu-stats-slds.srv.mwn.de/mlr_invite/)
2828
<!-- badges: end -->
2929

30+
```{=gfm}
3031
> [!IMPORTANT]
3132
> This package is in an early stage of development and should be considered experimental.
33+
```
3234

3335
## Installation
3436

README.md

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -15,8 +15,8 @@ status](https://www.r-pkg.org/badges/version/mlr3forecast)](https://CRAN.R-proje
1515
[![Mattermost](https://img.shields.io/badge/chat-mattermost-orange.svg)](https://lmmisld-lmu-stats-slds.srv.mwn.de/mlr_invite/)
1616
<!-- badges: end -->
1717

18-
> \[!IMPORTANT\] This package is in an early stage of development and
19-
> should be considered experimental.
18+
> [!IMPORTANT]
19+
> This package is in an early stage of development and should be considered experimental.
2020
2121
## Installation
2222

@@ -44,32 +44,32 @@ prediction = ff$predict_newdata(newdata, task)
4444
prediction
4545
#> <PredictionRegr> for 3 observations:
4646
#> row_ids truth response
47-
#> 1 NA 444.1509
48-
#> 2 NA 473.6015
49-
#> 3 NA 483.2165
47+
#> 1 NA 444.7671
48+
#> 2 NA 473.9790
49+
#> 3 NA 480.9669
5050
prediction = ff$predict(task, 142:144)
5151
prediction
5252
#> <PredictionRegr> for 3 observations:
5353
#> row_ids truth response
54-
#> 1 461 456.5106
55-
#> 2 390 408.6549
56-
#> 3 432 395.3594
54+
#> 1 461 462.5280
55+
#> 2 390 410.8195
56+
#> 3 432 388.3864
5757
prediction$score(measure)
5858
#> regr.rmse
59-
#> 23.87951
59+
#> 27.91612
6060

6161
ff = Forecaster$new(lrn("regr.ranger"), 1:3)
6262
resampling = rsmp("forecast_holdout", ratio = 0.8)
6363
rr = resample(task, ff, resampling)
6464
rr$aggregate(measure)
6565
#> regr.rmse
66-
#> 97.71474
66+
#> 115.1751
6767

6868
resampling = rsmp("forecast_cv")
6969
rr = resample(task, ff, resampling)
7070
rr$aggregate(measure)
7171
#> regr.rmse
72-
#> 51.24863
72+
#> 51.15563
7373
```
7474

7575
### Multivariate
@@ -88,39 +88,39 @@ prediction = ff$predict(new_task, 142:144)
8888
ff$predict(new_task, 142:144)
8989
#> <PredictionRegr> for 3 observations:
9090
#> row_ids truth response
91-
#> 1 461 448.8459
92-
#> 2 390 410.8536
93-
#> 3 432 406.0194
91+
#> 1 461 450.8882
92+
#> 2 390 405.8591
93+
#> 3 432 405.1108
9494
prediction$score(measure)
9595
#> regr.rmse
96-
#> 20.47428
96+
#> 18.94544
9797

9898
row_ids = new_task$nrow - 0:2
9999
ff$predict_newdata(new_task$data(rows = row_ids), new_task)
100100
#> <PredictionRegr> for 3 observations:
101101
#> row_ids truth response
102-
#> 1 432 408.5416
103-
#> 2 390 389.6410
104-
#> 3 461 394.0066
102+
#> 1 432 407.3052
103+
#> 2 390 386.6901
104+
#> 3 461 390.5332
105105
newdata = new_task$data(rows = row_ids, cols = new_task$feature_names)
106106
ff$predict_newdata(newdata, new_task)
107107
#> <PredictionRegr> for 3 observations:
108108
#> row_ids truth response
109-
#> 1 NA 408.5416
110-
#> 2 NA 389.6410
111-
#> 3 NA 394.0066
109+
#> 1 NA 407.3052
110+
#> 2 NA 386.6901
111+
#> 3 NA 390.5332
112112

113113
resampling = rsmp("forecast_holdout", ratio = 0.8)
114114
rr = resample(new_task, ff, resampling)
115115
rr$aggregate(measure)
116116
#> regr.rmse
117-
#> 83.38583
117+
#> 80.58328
118118

119119
resampling = rsmp("forecast_cv")
120120
rr = resample(new_task, ff, resampling)
121121
rr$aggregate(measure)
122122
#> regr.rmse
123-
#> 43.98399
123+
#> 44.15569
124124
```
125125

126126
### mlr3pipelines integration
@@ -130,5 +130,5 @@ glrn = as_learner(pop %>>% ff)$train(task)
130130
prediction = glrn$predict(task, 142:144)
131131
prediction$score(measure)
132132
#> regr.rmse
133-
#> 19.01081
133+
#> 19.22717
134134
```

0 commit comments

Comments
 (0)