@@ -45,32 +45,32 @@ prediction = ff$predict_newdata(newdata, task)
4545prediction
4646# > <PredictionRegr> for 3 observations:
4747# > row_ids truth response
48- # > 1 NA 446.9409
49- # > 2 NA 477.9439
50- # > 3 NA 480.5694
48+ # > 1 NA 448.8710
49+ # > 2 NA 475.2456
50+ # > 3 NA 480.5179
5151prediction = ff $ predict(task , 142 : 144 )
5252prediction
5353# > <PredictionRegr> for 3 observations:
5454# > row_ids truth response
55- # > 1 461 459.4145
56- # > 2 390 411.2457
57- # > 3 432 400.4514
55+ # > 1 461 456.4968
56+ # > 2 390 411.1712
57+ # > 3 432 393.9585
5858prediction $ score(measure )
5959# > regr.rmse
60- # > 21.97883
60+ # > 25.26957
6161
6262ff = Forecaster $ new(lrn(" regr.ranger" ), 1 : 3 )
6363resampling = rsmp(" forecast_holdout" , ratio = 0.8 )
6464rr = resample(task , ff , resampling )
6565rr $ aggregate(measure )
6666# > regr.rmse
67- # > 105.0997
67+ # > 105.8215
6868
6969resampling = rsmp(" forecast_cv" )
7070rr = resample(task , ff , resampling )
7171rr $ aggregate(measure )
7272# > regr.rmse
73- # > 54.93903
73+ # > 54.28352
7474```
7575
7676### Multivariate
@@ -90,34 +90,34 @@ ff = Forecaster$new(lrn("regr.ranger"), 1:3)$train(new_task)
9090prediction = ff $ predict(new_task , 142 : 144 )
9191prediction $ score(measure )
9292# > regr.rmse
93- # > 17.55705
93+ # > 17.0878
9494
9595row_ids = new_task $ nrow - 0 : 2
9696ff $ predict_newdata(new_task $ data(rows = row_ids ), new_task )
9797# > <PredictionRegr> for 3 observations:
9898# > row_ids truth response
99- # > 1 432 405.2216
100- # > 2 390 388.3066
101- # > 3 461 385.6412
99+ # > 1 432 405.5814
100+ # > 2 390 388.3657
101+ # > 3 461 390.9778
102102newdata = new_task $ data(rows = row_ids , cols = new_task $ feature_names )
103103ff $ predict_newdata(newdata , new_task )
104104# > <PredictionRegr> for 3 observations:
105105# > row_ids truth response
106- # > 1 NA 405.2216
107- # > 2 NA 388.3066
108- # > 3 NA 385.6412
106+ # > 1 NA 405.5814
107+ # > 2 NA 388.3657
108+ # > 3 NA 390.9778
109109
110110resampling = rsmp(" forecast_holdout" , ratio = 0.8 )
111111rr = resample(new_task , ff , resampling )
112112rr $ aggregate(measure )
113113# > regr.rmse
114- # > 82.35283
114+ # > 81.91252
115115
116116resampling = rsmp(" forecast_cv" )
117117rr = resample(new_task , ff , resampling )
118118rr $ aggregate(measure )
119119# > regr.rmse
120- # > 45.54337
120+ # > 41.87113
121121```
122122
123123### mlr3pipelines integration
@@ -128,7 +128,7 @@ glrn = as_learner(graph %>>% ff)$train(task)
128128prediction = glrn $ predict(task , 142 : 144 )
129129prediction $ score(measure )
130130# > regr.rmse
131- # > 34.29322
131+ # > 33.74039
132132```
133133
134134### Example: Forecasting electricity demand
@@ -166,11 +166,11 @@ prediction = glrn$predict_newdata(newdata, task)
166166prediction
167167# > <PredictionRegr> for 14 observations:
168168# > row_ids truth response
169- # > 1 NA 187.9399
170- # > 2 NA 190.5695
171- # > 3 NA 184.2617
169+ # > 1 NA 187.6208
170+ # > 2 NA 191.8121
171+ # > 3 NA 183.6753
172172# > --- --- ---
173- # > 12 NA 214.6350
174- # > 13 NA 218.8392
175- # > 14 NA 221.4170
173+ # > 12 NA 213.8759
174+ # > 13 NA 218.4198
175+ # > 14 NA 218.8139
176176```
0 commit comments