@@ -44,32 +44,32 @@ prediction = flrn$predict_newdata(newdata, task)
4444prediction
4545# > <PredictionRegr> for 3 observations:
4646# > row_ids truth response
47- # > 1 NA 434.9580
48- # > 2 NA 438.3391
49- # > 3 NA 456.1386
47+ # > 1 NA 438.0155
48+ # > 2 NA 439.6429
49+ # > 3 NA 457.8119
5050prediction = flrn $ predict(task , 142 : 144 )
5151prediction
5252# > <PredictionRegr> for 3 observations:
5353# > row_ids truth response
54- # > 1 461 456.7837
55- # > 2 390 412.4510
56- # > 3 432 434.0057
54+ # > 1 461 459.7825
55+ # > 2 390 417.8945
56+ # > 3 432 435.8002
5757prediction $ score(msr(" regr.rmse" ))
5858# > regr.rmse
59- # > 13.23942
59+ # > 16.26886
6060
6161flrn = ForecastLearner $ new(lrn(" regr.ranger" ), 1 : 12 )
6262resampling = rsmp(" forecast_holdout" , ratio = 0.9 )
6363rr = resample(task , flrn , resampling )
6464rr $ aggregate(msr(" regr.rmse" ))
6565# > regr.rmse
66- # > 47.49655
66+ # > 49.22924
6767
6868resampling = rsmp(" forecast_cv" )
6969rr = resample(task , flrn , resampling )
7070rr $ aggregate(msr(" regr.rmse" ))
7171# > regr.rmse
72- # > 25.05562
72+ # > 25.57887
7373```
7474
7575### Multivariate
@@ -89,34 +89,34 @@ flrn = ForecastLearner$new(lrn("regr.ranger"), 1:12)$train(new_task)
8989prediction = flrn $ predict(new_task , 142 : 144 )
9090prediction $ score(msr(" regr.rmse" ))
9191# > regr.rmse
92- # > 13.13675
92+ # > 12.35229
9393
9494row_ids = new_task $ nrow - 0 : 2
9595flrn $ predict_newdata(new_task $ data(rows = row_ids ), new_task )
9696# > <PredictionRegr> for 3 observations:
9797# > row_ids truth response
98- # > 1 432 435.4188
99- # > 2 390 434.2164
100- # > 3 461 457.9859
98+ # > 1 432 431.1496
99+ # > 2 390 429.3616
100+ # > 3 461 455.1301
101101newdata = new_task $ data(rows = row_ids , cols = new_task $ feature_names )
102102flrn $ predict_newdata(newdata , new_task )
103103# > <PredictionRegr> for 3 observations:
104104# > row_ids truth response
105- # > 1 NA 435.4188
106- # > 2 NA 434.2164
107- # > 3 NA 457.9859
105+ # > 1 NA 431.1496
106+ # > 2 NA 429.3616
107+ # > 3 NA 455.1301
108108
109109resampling = rsmp(" forecast_holdout" , ratio = 0.9 )
110110rr = resample(new_task , flrn , resampling )
111111rr $ aggregate(msr(" regr.rmse" ))
112112# > regr.rmse
113- # > 47.83001
113+ # > 48.2451
114114
115115resampling = rsmp(" forecast_cv" )
116116rr = resample(new_task , flrn , resampling )
117117rr $ aggregate(msr(" regr.rmse" ))
118118# > regr.rmse
119- # > 27.82117
119+ # > 26.80115
120120```
121121
122122### mlr3pipelines integration
@@ -131,7 +131,7 @@ glrn = as_learner(graph %>>% flrn)$train(task)
131131prediction = glrn $ predict(task , 142 : 144 )
132132prediction $ score(msr(" regr.rmse" ))
133133# > regr.rmse
134- # > 11.0778
134+ # > 12.39349
135135```
136136
137137### Example: Forecasting electricity demand
@@ -205,14 +205,14 @@ flrn = ForecastLearner$new(lrn("regr.ranger"), 1:3)$train(task)
205205prediction = flrn $ predict(task , 4460 : 4464 )
206206prediction $ score(msr(" regr.rmse" ))
207207# > regr.rmse
208- # > 25052.84
208+ # > 23543.57
209209
210210flrn = ForecastLearner $ new(lrn(" regr.ranger" ), 1 : 3 )
211211resampling = rsmp(" forecast_holdout" , ratio = 0.9 )
212212rr = resample(task , flrn , resampling )
213213rr $ aggregate(msr(" regr.rmse" ))
214214# > regr.rmse
215- # > 93423.87
215+ # > 92241
216216```
217217
218218### Example: Global vs Local Forecasting
@@ -247,7 +247,7 @@ row_ids = tab[year >= 2015, row_id]
247247prediction = flrn $ predict(task , row_ids )
248248prediction $ score(msr(" regr.rmse" ))
249249# > regr.rmse
250- # > 29931.59
250+ # > 32967.19
251251
252252# global forecasting
253253task = tsibbledata :: aus_livestock | >
@@ -268,7 +268,7 @@ row_ids = tab[year >= 2015 & state == "Western Australia", row_id]
268268prediction = flrn $ predict(task , row_ids )
269269prediction $ score(msr(" regr.rmse" ))
270270# > regr.rmse
271- # > 31607.32
271+ # > 31955.28
272272```
273273
274274### Example: generate new data
0 commit comments